Forces Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Forces, Density & Pressure
Sub Topic	Forces
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	74 minutes
Score:	/61
Percentage:	/100

CHEMISTRY ONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a stress = Young modulus \times strain

= $1.8 \times 10^{11} \times 8.2 \times 10^{-4}$ or 1.476×10^{8}	C1	
= 0.15 (0.148) GPa	A1	[2]

(b)	(i)	wavelength	= $3 \times 10^8 / 12 \times 10^{12}$ = $25 \mu m$	C1 A1	[2]
	(ii)	infra-red/IR		B1	[1]

- (c) (i) arrow drawn up to the left of 7.5 N force
approximately 5° to 40° to west of northA1 [1](ii) 1. correct vector triangle or working to show
magnitude of resultant force = 6.6 N
allow 6.5 to 6.7 N if scale diagramM1 [1]
 - 2. magnitude of acceleration = 6.6 / 0.75
 C1

 [scale diagram: (6.5 to 6.7) / 0.75]
 C1
 - = 8.8 m s⁻² [scale diagram: $8.7 8.9 \text{ m s}^{-2}$] A1 [2]
 - (iii) 19° [use of scale diagram allow 17° to 21° (a diagram must be seen)] B1 [1]

2	(a	(i)	resultant force is zero	B1	
			weight of plank + weight of man = $F_A + F_B$ or 200 (N) + 880 (N) or 1080 = $F_A + F_B$	B1	[2]
		(ii)	principle of moments used (anticlockwise moments) $F_{\rm B} \times 5.0$ (clockwise moments) $880 \times 0.5 + 200 \times 2.5$ $F_{\rm B} = (440 + 500)/5.0 = 188 \text{N}$	C1 C1 C1 A	[4]
	(b)	stra sta finis	aight line with positive gradient (allow freehand) rt point (0, 100) sh point (5, 980)	M1 A1 A1	[3]

3	(a	mass is the property of a body resisting changes in motion / quantity of matter in a body / measure of inertia to changes in motion				
		weigh or gra	ht is the force due to the gravitational field/force due to gravity avitational force	B1	[2]	
		Allow	v 1/2 for 'mass is scalar weight is vector'			
	(b)	(i) a te	arrow vertically down through O tension forces in correct direction on rope	B1 B1	[2]	
		(ii) 1	1. weight = $mg = 4.9 \times 9.81$ (= 48.07) 69 sin $\theta = mg$ $\theta = 44.(1)^{\circ}$ scale drawing allow ± 2° use of cos or tan 1/3 only	C1 C1 A1	[3]	
		2	2. $T = 69 \cos \theta$ = 49.6 / 50 N scale drawing 50 ±2 (2/2) 50	C1 ± <i>4 (1/2)</i> A1	[2]	
		c fi c	correct answers obtained using scale diagram or triangle of forces wil full marks cos in 1 . then sin in 2 . (2/2)	I score		
4	(ä	a the is c	e point where (all) the weight (of the body) considered / seems to act	M A	1 1 [2]	
	(1	o) (i)	vertical component of T (= 30 cos 40°) = 23 N	A	[1]	
		(ii)	the <u>sum</u> of the clockwise moments about a <u>point</u> equals the <u>sum</u> of anticlockwise moments (about the same point)	the B [*]	1 [1]	
		(iii)	(moments about A): 23 × 1.2 (27.58) = 8.5 × 0.60 + 1.2 × W working to show W = 19 or answer of 18.73 (N)	M1 M1 A1	1 1 1 [3]	
		(iv)	(<i>M</i> = <i>W</i> / <i>g</i> = 18.73 / 9.81 =) 1.9(09) kg	A	1 [1]	
	(c) (fo	or equilibrium) resultant force (and moment) = 0	B f <i>T</i>	1	
		not	it balanced by forces shown	, В	1 [2]	

5	(a)	pow pow	ver is the rate of doing work or power = work done / time (taken) or ver = energy transferred / time (taken)		B1	[1]
	(b)	(i)	as the speed increases drag / air resistance increases resultant force reduces hence acceleration is less constant speed when resultant force is zero (allow one mark for speed increases and acceleration decreases)		B1 B1 B1	[3]
	(ii)	forc P = P =	ce from cyclist = drag force / resistive force 12 × 48 576 W	B1 M1 A0	[2]	
	(iii)	tang gra	gent drawn at speed = 8.0 m s ⁻¹ dient values that show acceleration between 0.44 to 0.48 m s ⁻²	M1 A1	[2]	
	(iv)	F - 600 I	-R = ma $0/8 - R = 80 \times 0.5$ [using $P = 576$] $576/8 - R = 80 \times 0.5$ R = 75 - 40 = 35 N $R = 72 - 40 = 32 N$	C1 C1 A1	[3]	
	(v)	at 1 <i>R /</i> and	2 m s ⁻¹ drag is 48 N, at 8 m s ⁻¹ drag is 35 or 32 N v calculated as 4 and 4 or 4.4 I consistent response for whether <i>R</i> is proportional to <i>v</i> or not	B1	[1]	
6	(a)	wei cor = 1	ight = 452 × 9.81 nponent down the slope = 452 × 9.81 × sin 14° 072.7 = 1070 N		M1 A0	[1]
	(b)	(i)	F = ma T – (1070 + 525) = 452 × 0.13 T = 1650 (1653.76)N any forces missing 1/3		C1 C1 A1	[3]
		(ii)	1. $s = ut + \frac{1}{2}at^2$ hence $10 = 0 + \frac{1}{2} \times 0.13t^2$ $t = [(2 \times 10) / 0.13]^{1/2} = 12.4$ or $12s$		C1 A1	[2]
			2. $v = (0 + 2 \times 0.13 \times 10)^{1/2} = 1.61 \text{ or } 1.6 \text{ m s}^{-1}$		A1	[1]
	(c)	stra line line fina	aight line from the origin e down to zero velocity in short time compared to stage 1 e less steep negative gradient al velocity larger than final velocity in the first part – at least 2×		B1 B1 B1 B1	[4]