Forces

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Forces, Density \& Pressure
Sub Topic	Forces
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	74 minutes						
Score:	/61						
Percentage:	/100						
A*	A	B	C	D	E	U	
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$	

1 (a stress $=$ Young modulus \times strain

$$
=1.8 \times 10^{11} \times 8.2 \times 10^{-4} \text { or } 1.476 \times 10^{8}
$$

$$
=0.15(0.148) \mathrm{GPa}
$$

[2]
(b) (i) wavelength $=3 \times 10^{8} / 12 \times 10^{12}$ C1

$$
=25 \mu \mathrm{~m}
$$

(ii) infra-red/IR
(c) (i) arrow drawn up to the left of 7.5 N force approximately 5° to 40° to west of north
(ii) 1. correct vector triangle or working to show magnitude of resultant force $=6.6 \mathrm{~N}$ allow 6.5 to 6.7 N if scale diagram
2. magnitude of acceleration $=6.6 / 0.75$
[scale diagram: (6.5 to 6.7) / 0.75]

$$
=8.8 \mathrm{~m} \mathrm{~s}^{-2} \text { [scale diagram: } 8.7-8.9 \mathrm{~ms}^{-2} \text {] }
$$

(iii) 19° [use of scale diagram allow 17° to 21° (a diagram must be seen)] A1 B1
(a (i) resultant force is zero
weight of plank + weight of man $=F_{A}+F_{B}$
or $200(\mathrm{~N})+880(\mathrm{~N})$ or $1080=F_{A}+F_{B}$
(ii) principle of moments used
(anticlockwise moments) $F_{\mathrm{B}} \times 5.0$
(clockwise moments) $880 \times 0.5+200 \times 2.5$
$F_{\mathrm{B}}=(440+500) / 5.0=188 \mathrm{~N}$
(b) straight line with positive gradient (allow freehand)
start point $(0,100)$ finish point $(5,980)$ A1 M1
A1

B1 [2] C1 C1
C1
A
[4]

M1

3 (a mass is the property of a body resisting changes in motion / quantity of
matter in a body / measure of inertia to changes in motion

B1

B1 or gravitational force

Allow $1 / 2$ for 'mass is scalar weight is vector'
(b) (i) arrow vertically down through O

B1
tension forces in correct direction on rope
(ii) 1. weight $=m g=4.9 \times 9.81(=48.07)$
$69 \sin \theta=m g$
$\theta=44 .(1)^{\circ} \quad$ scale drawing allow $\pm 2^{\circ}$
use of cos or tan $1 / 3$ only

2. $T=69 \cos \theta$
 $$
=49.6 / 50 \mathrm{~N}
$$

scale drawing $50 \pm 2(2 / 2) \quad 50 \pm 4(1 / 2)$
correct answers obtained using scale diagram or triangle of forces will score full marks cos in 1. then \sin in 2. (2/2)

4 (a the point where (all) the weight (of the body) M1 is considered / seems to act A1
(b) (i) vertical component of $T\left(=30 \cos 40^{\circ}\right)=23 \mathrm{~N}$
(ii) the sum of the clockwise moments about a point equals the sum of the

B1
(iii) (moments about A): $23 \times 1.2(27.58) \quad \mathrm{M} 1$
$\begin{array}{ll}\text { (c) (for equilibrium) resultant force (and moment) }=0 & \text { B1 } \\ \text { upward force does not equal downward force } / \text { horizontal component of } T \\ \text { not balanced by forces shown } & \text { B1 }\end{array}$

B1
C1
C1

A
anticlockwise moments (about the same point)

$$
\begin{aligned}
\text { (moments adout } A): & \text { M1 } \\
& =8.5 \times 0.60+1.2 \times W \\
\text { working to show } W=19 \text { or answer of } 18.73(\mathrm{~N}) & \text { A1 }
\end{aligned}
$$

(iv) $(M=W / g=18.73 / 9.81=1.9(09) \mathrm{kg}$
(iv) $(M=W / g=18.73 / 9.81=) 1.9(09) \mathrm{kg}$B1
(a) power is the rate of doing work or power = work done / time (taken) or
power = energy transferred / time (taken)

B1
(b) (i) as the speed increases drag / air resistance increases

B1

B1 B1
constant speed when resultant force is zero
(allow one mark for speed increases and acceleration decreases)
(ii) force from cyclist $=$ drag force $/$ resistive force
$P=12 \times 48$
$P=576 \mathrm{~W}$
A0
(iii) tangent drawn at speed $=8.0 \mathrm{~m} \mathrm{~s}^{-1}$
gradient values that show acceleration between 0.44 to $0.48 \mathrm{~m} \mathrm{~s}^{-2}$
(iv) $F-R=m a$

$$
600 / 8-R=80 \times 0.5 \quad[\text { using } P=576] 576 / 8-R=80 \times 0.5
$$

$$
R=75-40=35 \mathrm{~N}
$$

$$
R=72-40=32 \mathrm{~N}
$$

(v) at $12 \mathrm{~m} \mathrm{~s}^{-1}$ drag is 48 N , at $8 \mathrm{~m} \mathrm{~s}^{-1}$ drag is 35 or 32 N
R / v calculated as 4 and 4 or 4.4
and consistent response for whether R is proportional to v or not
B1

[1]

6
(a) weight $=452 \times 9.81$
component down the slope $=452 \times 9.81 \times \sin 14^{\circ}$
$=1072.7=1070 \mathrm{~N}$
(b) (i) $F=m a$
$T-(1070+525)=452 \times 0.13$
$T=1650(1653.76) \mathrm{N}$ any forces missing $1 / 3$
(ii) 1. $s=u t+1 / 2 a t^{2}$ hence $10=0+1 / 2 \times 0.13 t^{2}$ $t=[(2 \times 10) / 0.13]^{1 / 2}=12.4$ or 12 s
2. $v=(0+2 \times 0.13 \times 10)^{1 / 2}=1.61$ or $1.6 \mathrm{~m} \mathrm{~s}^{-1}$
(c) straight line from the origin
line down to zero velocity in short time compared to stage 1
line less steep negative gradient
final velocity larger than final velocity in the first part - at least $2 \times$

B1

B1
B1
C1
A1

