Forces

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Forces, Density \& Pressure
Sub Topic	Forces
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	88 minutes				
Score:	/73				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a resultant moment = zero / sum of clockwise moments = sum of anticlockwise moments B1 resultant force $=0$
(b) shape and orientation correct and forces labelled and arrows correct M1 angles correct / labelled A1
(c) (i) $T \cos 18^{\circ}=W$

Scale diagram:
$T=520 / \cos 18^{\circ}=547 \mathrm{~N} \quad \pm 20 \mathrm{~N}$
(ii) $R=T \sin 18^{\circ}$

$$
=169 \mathrm{~N} \quad \pm 20 \mathrm{~N}
$$

(d) θ is larger hence $\cos \theta$ is smaller, $T=W / \cos \theta$ hence T is larger

2 (a no resultant force/sum of forces zero
C1
A1

(a (i) point at which whole weight of body	M
	may be considered to act

(ii) sum of forces in any direction is zero sum of moments about any point is zero
(b) either.
T and W have zero moment about P M1
so F must have zero moment, i.e. pass through P A1
or.
if all pass through P , distance from P is zero for all forces so sum of moments about P is zero
(c) (i) $F \cos \alpha=T \cos \beta$

B1
(ii) $W=F \sin \alpha+T \sin \beta$

B1
(iii) $2 W=3 T \sin \beta$

B1

4 (a (i) (vertical component = $\left.44 \sin 30^{\circ}=\right) 22 \mathrm{~N}$
(ii) (horizontal component $\left.=44 \cos 30^{\circ}=\right) 38(.1) \mathrm{N}$
(b) $W \times 0.64=22 \times 1.60$

A1 [1
A1 [1

C1
A1 [2]

B1 [1

B1

B1 B1
(M1)
$(W=) 55 \mathrm{~N}$
(c) F has a horizontal component (not balanced by W)
or F has 38 N acting horizontally
or 38 N acts on wall
or vertical component of F does not balance W or F and W do not make a closed triangle of forces
(d) line from P in direction towards point on wire vertically above W and direction up

5 (a displacement/velocity/acceleration/momentum/etc. three correct (none wrong) 2, two correct (none or one wrong) 1
(b) (i) $Y=70 \mathrm{~N}$ [allow 71 N as $+1 / 2$ small square on graph]
(ii) $\theta=90^{\circ}$
(for equilibrium) the direction of Y must be opposite to Z
or using $Y \sin \theta=Z$, hence $\sin \theta=70 / 70=1, \theta=90^{\circ}$
(iii) 1. $Y \cos \theta=160$ and $Y \sin \theta=70$
$\tan \theta=70 / 160$ hence $\theta=23.6^{\circ}\left(24^{\circ}\right)$
2. $Y=160 / \cos 23.6^{\circ}$ or $70 / \sin 23.6^{\circ}$

$$
=174.6 \text { or } 175 \text { or } 170 \mathrm{~N}
$$

or:

$$
\begin{align*}
& 160^{2}+70^{2}=Y^{2} \tag{C1}\\
& Y=174.6 \text { or } 175 \text { or } 170 \mathrm{~N}
\end{align*}
$$

(c) (equilibrium not possible as) there is no vertical component from Y to balance Z

6 (a torque is the product of one of the forces and the distance between forces
(b) (i) torque $=8 \times 1.5=12 \mathrm{Nm}$
(ii) there is a resultant torque / sum of the moments is not zero
(c) (i) $\mathrm{B} \times 1.2=2.4 \times 0.45$
$B=0.9(0) \mathrm{N}$
A1
(ii) $\mathrm{A}=2.4-0.9=1.5 \mathrm{~N} /$ moments calculation

7 (a point where the weight of an object / gravitational force may be considered to act
(b) product of the force and the perpendicular distance (to the pivot)

B1
(c) (i) 1. sum / net / resultant force is zero
2. net / resultant moment is zero
sum of clockwise moments = sum of anticlockwise moments
B1
(ii) $W \times 0.2=80 \times 0.5+70 \times 1.3$

$$
=40+91
$$

$W \quad=655 \mathrm{~N}$
(allow $2 / 3$ for one error in distance but 0/3 if two errors)
(iii) move pivot to left
gives greater clockwise moment / smaller anticlockwise moment
or
move W to right
gives smaller anticlockwise moment
(b) distance $=$ average speed \times time (however expressed)

$$
=14 \mathrm{~m}
$$

C1
A1
(ii) distance $=5.6 \times(T-5)($ or 3.5T-14)

A [1]
(c) $3.5 T=14+5.6(T-5)$

C1
$T=6.7 \mathrm{~s}$
A1
(d) (i) acceleration $=(5.6 / 5=) 1.12 \mathrm{~m} \mathrm{~s}^{-2}$

C1
force $=m a$
C1
$=75 \mathrm{~N}$
A1
(ii) power $=($ force \times speed $=)\{75+23\} \times 4.5$

C1

$$
=440 \mathrm{~W}
$$

A1
(allow 1/2 for 234 W, 0/2 for 338 W or 104 W)

