Forces Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Forces, Density & Pressure
Sub Topic	Forces
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	88 minutes
Score:	/73
Percentage:	/100

CHEMISTRYONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	(a resultant moment = zero / sum of clockwise moments = sum of anticlockwise moments resultant force = 0			
	(b)	shape and orientation correct and forces labelled and arrows correct angles correct / labelled	M1 A1	[2]	
	(c)	(i) $T \cos 18^\circ = W$ Scale diagram: $T = 520 / \cos 18^\circ = 547 \text{ N} \pm 20 \text{ N}$	C1 A1	[2]	
		(ii) $R = T \sin 18^{\circ}$ = 169 N ± 20 N	A1	[1]	
	(d)	θ is larger hence $\cos \theta$ is smaller, $T = W / \cos \theta$ hence T is larger	M1 A0	[1]	
2	(a	no resultant force/sum of forces zero	31	101	
		no resultant moment/torque/sum of moments/torques zero	31	[2]	
	(b)	 (i) each force is represented by the side of a triangle/by an arrow in magnitude and direction arrows joined, head to tail (could be shown on a sketch diagram) 	И1 А1 В1	[3]	
		(ii) if the triangle is 'closed' (then the forces are in equilibrium)	31	[1]	
	(c)	triangle drawn with correct shape (incorrect arrows loses this mark) $T_1 = 5.4 \pm 0.2 \text{ N}$ $T_2 = 4.0 \pm 0.2 \text{ N}$	31 3 3	[3]	
	(d)	forces in strings would be horizontal [(so) no vertical force to support the weight [31 31	[2]	

3 (a (i) point at which whole weight of body may be considered to act	M1 A1	[2]
(ii) sum of forces in any direction is zero sum of moments about any point is zero	B1 B1	[2]
 (b) either: <i>T</i> and <i>W</i> have zero moment about P so <i>F</i> must have zero moment, i.e. pass through P or: if all pass through P, distance from P is zero for all forces so (M1) sum of moments about P is zero (A1) 	M1 A1	[2]
(c) (i)F $\cos \alpha$ = $T\cos \beta$	B1	[1]
(ii) $W = F \sin \alpha + T \sin \beta$	B1	[1]
(iii) $2W = 3T \sin\beta$	B1	[1]
 4 (a (i) (vertical component = 44 sin 30° =) 22 N (ii) (horizontal component = 44 cos 30° =) 38(.1) N 	A	1 [1 1 [1
(b) $W \times 0.64 = 22 \times 1.60$	С	1
(<i>W</i> =) 55 N	А	1 [2]
(c) F has a horizontal component (not balanced by W) or F has 38 N acting horizontally or 38 N acts on wall or vertical component of F does not balance W or F and W do not make a closed triangle of forces	В	1 [1
(d) line from P in direction towards point on wire vertically above W and direction	n up B	1 [1]

(a dis thre	placement/velocity/acceleration/momentum/etc. ee correct (none wrong) 2, two correct (none or one wrong) 1	A2	[2]
(b) (i)	Y = 70 N [allow 71 N as $+\frac{1}{2}$ small square on graph]	A1	[1]
(ii)	$\theta = 90^{\circ}$	M1	
	(for equilibrium) the direction of Y must be <u>opposite</u> to Z		
	or using Y sin θ = Z, hence sin θ = 70 / 70 = 1, θ = 90°	A1	[2]
(iii)	1. $Y \cos \theta = 160$ and $Y \sin \theta = 70$	C1	
	$\tan \theta = 70/160 \text{ hence } \theta = 23.6^{\circ} (24^{\circ})$	A1	[2]
	2. $Y = 160 / \cos 23.6^{\circ} \text{ or } 70 / \sin 23.6^{\circ}$ = 174.6 or 175 or 170 N	C1 A	[2]
	or.		
	$160^2 + 70^2 = Y^2$ Y = 174.6 or 175 or 170 N	(C1) (A1)	

(c) (equilibrium not possible as) there is no vertical component from Y to balance Z B1 [1]

6	(a	toro the	que is the product of one of the forces and the distance between forces <u>perpendicular</u> distance between the forces	M1 A1	[2]
	(b)	(i)	torque = $8 \times 1.5 = 12 \text{ Nm}$	A1	[1]
		(ii)	there is a resultant torque / sum of the moments is not zero (the rod rotates) and is not in equilibrium	M1 A1	[2]
	(c)	(i)	B × 1.2 = 2.4 × 0.45 B = 0.9(0) N	C1 A1	[2]
		(ii)	A = $2.4 - 0.9 = 1.5$ N / moments calculation	A1	[1]

5

7	(a	pc m	ay be considered to act	M1 A1	[2]
	(b) pr	oduct of the force and the perpendicular distance (to the pivot)	B1	[1]
	(c) (i)	1. sum / net / resultant force is zero	B1	
			 net / resultant moment is zero sum of clockwise moments = sum of anticlockwise moments 	B1	[2]
		(ii)	$W \times 0.2 = 80 \times 0.5 + 70 \times 1.3$ = 40 + 91 W = 655 N (allow 2/3 for one error in distance but 0/3 if two errors)	C1 C1 A1	[3]
		(iii)	move pivot to left	(M1)	
			gives greater clockwise moment / smaller anticlockwise moment	(A1)	
			or move W to right gives smaller anticlockwise moment	(M1) (A1)	[2]
8	(a	3.5	Τ	B1	[1
	(b)		distance = average speed × time (however expressed) = 14 m	C1 A1	[2]
		(ii)	distance = $5.6 \times (T - 5)$ (or $3.5T - 14$)	А	[1]
	(c)	3.5 ⁻ T=	T = 14 + 5.6(T - 5)	C1 A1	[2]
	(d)	(i)	acceleration = $(5.6 / 5 =) 1.12 \text{ m s}^{-2}$ force = ma = 75 N	C1 C1 A1	[3]
		(ii)	power = (force × speed =) {75 + 23} × 4.5 = 440 W (allow 1/2 for 234 W, 0/2 for 338 W or 104 W)	C1 A1	[2]