Work, Energy & Power

Question paper 2

Level	International A Level		
Subject	Physics		
Exam Board	CIE		
Topic	Work, Energy & Power		
Sub Topic			
Paper Type	Theory		
Booklet	Question paper 2		

Time Allowed: 63 minutes

Score: /52

Percentage: /100

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) Explain what is meant by work done.

(b) A boy on a board B slides down a slope, as shown in Fig. 3.1.

Fig. 3.1

The angle of the slope to the horizontal is 30° . The total resistive force F acting on B is constant.

(i) State a word equation that links the work done by the force *F* on B to the changes in potential and kinetic energy.

[4]

(ii) The boy on the board B moves with velocity v down the slope. The variation with time t of v is shown in Fig. 3.2.

The total mass of B is 75 kg. For B, from t = 0 to t = 2.5 s,

1. show that the distance moved down the slope is 9.3 m,

2. calculate the gain in kinetic energy,

gain in kinetic energy = J [3]

[2]

3. calculate the loss in potential energy,

4. calculate the resistive force F.

F = N [3]

2 (a) State what is meant by work done.

.....

.....[1]

(b) A trolley of mass 400 g is moving at a constant velocity of 2.5 m s⁻¹ to the right as shown in Fig. 3.1.

Fig. 3.1

Show that the kinetic energy of the trolley is 1.3J.

[2]

(c) The trolley in (b) moves to point P as shown in Fig. 3.2.

Fig. 3.2

At point P the speed of the trolley is $2.5 \,\mathrm{m \, s^{-1}}$.

A variable force F acts to the left on the trolley as it moves between points P and Q. The variation of F with displacement x from P is shown in Fig. 3.3.

Dr. Asher Rana

The trolley comes to rest at point Q.

(i) Calculate the distance PQ.

(ii) On Fig. 3.4, sketch the variation with *x* of velocity *v* for the trolley moving between P and Q.

Fig. 3.4

[2]

3	(a)	Di	stinguish between gravitational potential energy and elastic potential energy.
			rol
			[2]
(1	b)		all of mass 65g is thrown vertically upwards from ground level with a speed of ns ⁻¹ . Air resistance is negligible.
		(i)	Calculate, for the ball,
			1. the initial kinetic energy,
			kinetic energy = J [2]
			2. the maximum height reached.
			2. the maximum neight reached.
			maximum height = m [2]
		(ii)	The ball takes time t to reach maximum height. For time $\frac{t}{2}$ after the ball has been thrown, calculate the ratio
			potential energy of ball
			kinetic energy of ball
			ratio =[3]
	,	:::\	
	(iii)	State and explain the effect of air resistance on the time taken for the ball to reach maximum height.

Dr. Asher Rana

4	(a)		object falls vertically from rest through air. State and explain the energy conversions occur as the object falls.	;
			[3]	
	(b)	A b	all of mass $150\mathrm{g}$ is thrown vertically upwards with an initial speed of $25\mathrm{ms^{-1}}$.	
		(i)	Calculate the initial kinetic energy of the ball.	
			kinetic energy = J [3]	
		(ii)	The ball reaches a height of 21 m above the point of release.	
			For the ball rising to this height, calculate	
			1. the loss of energy of the ball to air resistance,	
			The root of onergy of the same an rootetanes,	
			energy loss =J [3]	
			2. the average force due to the air resistance.	

force = N [2]

Two planks of wood AB and BC are inclined at an angle of 15° to the horizontal. The two 5 wooden planks are joined at point B, as shown in Fig. 2.1.

Fig. 2.1

A small block of metal M is released from rest at point A. It slides down the slope to B and up the opposite side to C. Points A and C are 0.26 m above B. Assume frictional forces are negligible.

(a)	(i)	Describe and	explain the ac	celeration of M	l as it travels fr	om A to B and	I from B to C

•••••	 	 •	 	

(ii) Calculate the time taken for M to travel from A to B.

Calculate the speed of M at B.

speed =
$$ms^{-1}$$
 [2]

(b) The plank BC is adjusted so that the angle it makes with the horizontal is 30°. M is released from rest at point A and slides down the slope to B. It then slides a distance along the plank from B towards C.

Use the law of conservation of energy to calculate this distance. Explain your working.