Work, Energy & Power

Question paper 5

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Work, Energy & Power
Sub Topic	
Paper Type	Theory
Booklet	Question paper 5

Time Allowed: 70 minutes

Score: /58

Percentage: /100

A*	Α –	В	С	D	-E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a)	Use the definition of power to show that the SI base units of power are $kg m^2 s^{-3}$.
/I- \	[2]
(b)	Use an expression for electrical power to determine the SI base units of potential difference.
	units[2]

1

2 A spring is kept horizontal by attaching it to points A and B, as shown in Fig. 4.1.

Fig. 4.1

Point A is on a movable slider and point B is on a fixed support. A cart of mass 1.7 kg has horizontal velocity v towards the slider. The cart collides with the slider. The spring is compressed as the cart comes to rest. The variation of compression x of the spring with force F exerted on the spring is shown in Fig. 4.2.

Fig. 4.2

Fig. 4.2 shows the compression of the spring for $F = 1.5 \,\mathrm{N}$ to $F = 4.5 \,\mathrm{N}$. The cart comes to rest when F is 4.5 N.

- (a) Use Fig. 4.2 to
 - (i) show that the compression of the spring obeys Hooke's law,

•••••	 	

(ii)) determine the spring constant of the sp	oring,
		1
	spring co	onstant = N m ⁻¹ [2]
(iii)) determine the elastic potential energy brought to rest.	$/$ E_{P} stored in the spring due to the cart being
		E _P = J [3]
		akes contact with the slider. Assume that all the
kin	netic energy of the cart is converted to the	e elastic potential energy of the spring.
		speed = ms ⁻¹ [2]

A ball is thrown from A to B as shown in Fig. 2.1. 3

Fig. 2.1

The ball is thrown with an initial velocity V at 60° to the horizontal. The variation with time t of the vertical component $V_{\rm v}$ of the velocity of the ball from t=0 to $t=0.60\,{\rm s}$ is shown in Fig. 2.2.

Fig. 2.2

				11 11 1
Accuma	aır	resistance	10	nadligihla
ASSUITIC	an	1 Colotal ICC	13	ricgilgible.

(a)	(i)	Complete Fig. 2.2 for the time until the ball reaches B. [2]		
	(ii)	Calculate the maximum height reached by the ball.		
	(iii)	height =	[2]	
		$V_{\rm h} = \dots m {\rm s}^{-1}$	[2]	
	(iv)	On Fig. 2.2, sketch the variation with t of $V_{\rm h}$. Label this sketch $V_{\rm h}$.	[1]	
(b)		e ball has mass 0.65 kg. culate, for the ball,		
	(i)	the maximum kinetic energy,		
		maximum kinetic energy =J	[3]	
	(ii)	the maximum potential energy above the ground.		

4	(a)	State the p	orinciple of conse	rvation of	momentu	ım.				
										[2]
	(b)	A ball X a shown in F	nd a ball Y are ig. 4.1.	travelling	along the	e same str	aight line in t	he same	directio	n, as
		X	-	Y	-					
		400 g	$0.65 \mathrm{ms^{-1}}$	600 g	0.45 n	ns ⁻¹				
					Fig. 4.1					
			mass 400 g and mass 600 g and							
			hes up and collid horizontal velocit				n, X has horizo	ontal veloc	ity 0.41	m s ⁻¹
						X	•		Y	_
						400 g	$0.41 \mathrm{m s^{-1}}$	(600 g	V
					Fig. 4.2					
		Calculate								
		(i) the tot	tal initial moment	um of the	two balls	,				
					momen	tum =			١	ls [3]
		(ii) the ve	elocity <i>v</i> ,							

v = ms⁻¹ [2]

	kinetic energy =
(c)	Explain how you would check whether the collision is elastic.
	[1]
(d)	Use Newton's third law to explain why, during the collision, the change in momentum of X is equal and opposite to the change in momentum of Y.
	[2]

(iii) the total initial kinetic energy of the two balls.

5 (a) Determine the SI base units of power.

SI base units of power[3]

(b) Fig. 1.1 shows a turbine that is used to generate electrical power from the wind.

Fig. 1.1

The power P available from the wind is given by

$$P = CL^2 \rho v^3$$

where L is the length of each blade of the turbine, ρ is the density of air, v is the wind speed, C is a constant.

(i) Show that C has no units.

(ii)	The length L of each blade of the turbine is 25.0 m and the density ρ of air is 1.30 in SI units. The constant C is 0.931. The efficiency of the turbine is 55% and the electric power output P is 3.50 × 10 ⁵ W.				
	Calculate the wind speed.				
	wind speed = m s ⁻¹ [3]				
(iii)	Suggest two reasons why the electrical power output of the turbine is less than the power available from the wind.				
	1				
	2				
	[2]				

6	(a)	(i)	State the principle of conservation of momentum
U	(a)	('')	otate the principle of conservation of momentum

.....[2]

(ii) State the difference between an elastic and an inelastic collision.

(b) An object A of mass 4.2 kg and horizontal velocity 3.6 m s⁻¹ moves towards object B as shown in Fig. 3.1.

Fig. 3.1

Object B of mass $1.5\,\mathrm{kg}$ is moving with a horizontal velocity of $1.2\,\mathrm{m\,s^{-1}}$ towards object A.

The objects collide and then both move to the right, as shown in Fig. 3.2.

Fig. 3.2

Object A has velocity v and object B has velocity $3.0 \,\mathrm{m \, s^{-1}}$.

(i) Calculate the velocity v of object A after the collision.

(ii) Determine whether the collision is elastic or inelastic.