Work, Energy & Power Mark Scheme 1

Level	International A Level					
Subject	Physics					
Exam Board	CIE					
Торіс	Work, Energy & Power					
Sub Topic						
Paper Type	Theory					
Booklet	Mark Scheme 1					
	50 minutes					
Coores						
Score:	/41					
Percentage:	/100					
A* A	B C D E U					
>85% '77.5%	70% 62.5% 57.5% 45% <45%					

1	(a	(pov	wer =) work done / time (taken) or rate of work done	A1		[1]
	(b)	(i)	F - R = ma	C1		
			$F = 1500 \times 0.82 + 1200$	C1		
			= 2400 (2430)N	A1		[3]
		(ii)	P = Fv	C1		
			= (2430 × 22) = 53000 (53500) W	A1		[2]
	(c)	(the car	re is maximum power from car and) resistive force = force produced by hence no acceleration			
		sug was	gestion in terms of power produced by car and power ted to overcome resistive force	B1		[1]
2	(a	(i)	change in kinetic energy = $\frac{1}{2}mv^2$		C1	
			= $0.5 \times 25 \times (0.64)^2 = 5.1(2) \text{ J}$		А	[2]
		(ii)	zero		A1	[1
		(iii)	(–)5.1(2)J		A	[1]
	(b)	(i)	PE = mgh		C1	
			= $350 \times 0.64 \times 25$		C1	
			= 5600 J		A1	[3]
			(If full length used allow 1/3)			
		(ii)	$P = Fv$ or gain in PE/t, E_P/t or work done/t, W/t		C1	
			= 350×0.64 or 5600 / 25			
			= 220 (224) W		A	[2]

3	(a	(i)	work (done)/time (taken)	B1	[1]
		(ii)	work = force × displacement (in direction of force) power = force × displacement/time (taken) = force × velocity	B1 B1	[2]
	(b)	(i)	weight = <i>mg</i>	C1	
			P = Fv = 2500 × 9.81 × sin 9° × 8.5 (or use cos 81°) = 33 (32.6)kW	C1 A1	[3]
		(ii)	no gain or loss of KE no work (done) against air resistance	B1 B1	[2]
4 (a kinetic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.040 \times (2.8)^2 = 0.14$		a kir	netic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.040 \times (2.8)^2 = 0.157 \text{ J or } 0.16 \text{ J}$	C1 A	[2]
	(k	o) (i)	k = F/x or F = kx	C1	
			= 0.0175 m	A1	[2]
		(ii)	area under graph = elastic potential energy stored or $\frac{1}{2} kx^2$ or $\frac{1}{2} Fx$ (energy stored =) 0.1225 J less than KE (of 0.16 J)	C1	[2]

<u>CHEMISTRY ONLINE</u> — TUITION — 5(a GPE: energy of a mass due to its position in a gravitational fieldB1KE: energy (a mass has) due to its motion/speed/velocityB1[2]

(b) (i) 1. KE =
$$\frac{1}{2}mv^2$$
 C1

$$=\frac{1}{2}\times0.4\times(30)^2$$
C1

2.
$$s = 0 + \frac{1}{2} \times 9.81 \times (2.16)^2$$
 or $s = (30 \sin 45^\circ)^2 / (2 \times 9.81)$ C1

3. GPE =
$$mgh$$

= $0.4 \times 9.81 \times 22.88 = 89.8$ (90) J C1
A1 [2]

2. (horizontal) velocity is not zero/(object) is still moving/answer explained in terms of conservation of energy B1 [1]

CHEMISTRY ONLINE — TUITION —