Work, Energy \& Power
 Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Work, Energy \& Power
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 2

1 (a work done is the product of force and the distance moved in the direction of the force or product of force and displacement in the direction of the force
(b) (i) work done equals the decrease in GPE - gain in KE

B1
(ii) 1. distance $=$ area under line

C1

$$
\begin{equation*}
=(7.4 \times 2.5) / 2=9.3 \mathrm{~m}(9.25 \mathrm{~m}) \tag{2}
\end{equation*}
$$

B1
or
acceleration from graph $a=7.4 / 2.5$ ($=2.96$)
and equation of motion $(7.4)^{2}=2 \times 2.96 \times s$ gives $s=9.3(9.25) \mathrm{m}$
2. kinetic energy $=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 75 \times(7.4)^{2} \\
& =2100 \mathrm{~J}
\end{aligned}
$$

C1
A1
3. potential energy $=m g h$
$h=9.3 \sin 30^{\circ} \quad$ C1
$P E=75 \times 9.81 \times 9.3 \sin 30^{\circ}=3400 \mathrm{~J}$ A1
4. work done = energy loss
$R=(3421-2054) / 9.3$

$$
=150(147) \mathrm{N}
$$

2 (a (work $=$) force \times distance moved / displacement in the direction of the force OR when a force moves in the direction of the force work is done
(b) kinetic energy $=1 / 2 m v^{2}$

$$
=\underline{1 / 2} 0.4(2.5)^{2}=1.25 / 1.3 \mathrm{~J}
$$

(c) (i) area under graph is work done / work done $=1 / 2 F x$
$1.25=(14 x) / 2 \quad \mathrm{C} 1$
$x=0.18(0.179) \mathrm{m} \quad$ [allow $x=0.19 \mathrm{~m}$ using kinetic energy $=1.3 \mathrm{~J}$]
A1
(ii) smooth curve from $v=2.5$ at $x=0$ to $v=0$ at Q M1 curve with increasing gradient
(a gravitational PE is energy of a mass due to its position in a gravitational field
(b) (i) 1. kinetic energy $=1 / 2 m v^{2}$

$$
\begin{equation*}
=1 / 2 \times 0.065 \times 16^{2}=8.3(2) \mathrm{J} \tag{2}
\end{equation*}
$$

2. $\begin{array}{ll}v^{2}=2 g h \text { OR PE }=m g h & \mathrm{C} 1 \\ h=16^{2} /(2 \times 9.81)=13(.05) \mathrm{m} & \mathrm{A} 1\end{array}$
$h=16^{2} /(2 \times 9.81)=13(.05) \mathrm{m}$
(ii) speed at $t=1 / 2$ total time $=8\left(\mathrm{~ms}^{-1}\right)$

or total $t=1.63$ or $t_{1 / 2}=0.815 \mathrm{~s}$	C1
or h at $t_{1 / 2}=9.78(\mathrm{~m})$	C1
or ratio $=9.78 / 3.26=3$	A1

C1
KE is $1 / 4$
and $P E$ is $3 / 4$ of max ratio $=3$
or ratio $=9.78 / 3.26=3$
A1
(iii) time is less because (average) acceleration is greater OR average force is greater
(a) loss in potential energy due to decrease in height (as P.E. $=m g h$)
gain in kinetic energy due to increase in speed (as K.E. $=1 / 2 m v^{2}$) special case 'as PE decreases KE increases' (1/2)
increase in thermal energy due to work done against air resistance loss in P.E. equals gain in K.E. and thermal energy
(b) (i) kinetic energy $=1 / 2 m v^{2}$

$$
\begin{aligned}
& =1 / 2 \times 0.150 \times(25)^{2} \\
& =46.875=47 \mathrm{~J}
\end{aligned}
$$

(ii) 1. potential energy $(=m g h)=0.150 \times 9.81 \times 21$

$$
\begin{array}{rlrl}
\text { loss } & =\mathrm{KE}-m g h=46.875-(30.9) & \mathrm{C} 1 \\
& =15.97=16 \mathrm{~J} & \mathrm{~A} 1
\end{array}
$$

2. work done $=16 \mathrm{~J}$ work done $=$ force \times distance

5 (a) (i) accelerations (A to 8 and 8 to C) are same magnitude
accelerations (A to 8 and 8 to C) are opposite directions or both accelerations are toward 8
(A to 8 and $8 \mathrm{~b} C$) the component of the weight down the slope provides the acceleration
(ii) acceleration $=$ gsin 15°
$s=0+1 / 2$ af $\quad s=0.26 / \sin 15^{\circ}=1.0$
$t^{2} \frac{1.0 \times 2}{9.8 \times \sin 15^{\circ}} \quad t=0.89 \mathrm{~s}$
(iii) $\boldsymbol{v}=0+\mathrm{g} \sin 15$ tor.; $=0+2 \mathrm{~g} \sin 15 \times 1.0$ $\mathrm{v}=2.26 \mathrm{~ms}-1$
(using loss of GPE = gain $K E$ can score full marks)
(b) loss of GPE at $A=$ gain in GPE at C or loss of $K E$ at $8=$ gain in GPE at C $\begin{array}{ll}h, h_{2}=0.26 \mathrm{~m} \text { or }^{1 / 2} m 2=m g h \quad h_{2}=0.5 \times(2.26)^{2} / 9.81=0.26 \mathrm{~m} \\ x=0.261 \sin 30^{\circ}=0.52 \mathrm{~m} & \text { A1 }\end{array}$

C1
C1 81
[3]
[2]

