Work, Energy & Power Mark Scheme 2

Level	International A Level							
Subject	Physics							
Exam Board	CIE							
Торіс	Work, Energy & Power							
Sub Topic								
Paper Type	Theory							
Booklet	Mark Scheme 2							
Time Allowed: Score:	63 minutes /52							
Score:	/52							
Score:	/52							

1	(a work done is the product of force and the distance <u>moved</u> in the direction of the force										
		B1	[1]								
	(b)	(i)	work done equals the <u>decrease</u> in GPE – <u>gain</u> in KE	B1	[1]						
		(ii)	1. distance = area under line = (7.4 × 2.5) / 2 = 9.3 m (9.25 m)								
			or								
			acceleration from graph $a = 7.4/2.5$ (= 2.96) and equation of motion $(7.4)^2 = 2 \times 2.96 \times s$ gives $s = 9.3$ (9.25) m								
		2. kinetic energy = $\frac{1}{2}mv^2$ = $\frac{1}{2} \times 75 \times (7.4)^2$									
		= 2100 J 3. potential energy = <i>mgh</i> <i>h</i> = 9.3 sin 30 ° PE = 75 × 9.81 × 9.3 sin 30 ° = 3400 J 4. work done = energy loss									
	R = (3421 - 2054)/9.3 = 150 (147)N										
2	(a	B1	[1]								
	(b)	C1 A1	[2]								
	(c)) (i)	area under graph is work done / work done = $\frac{1}{2}Fx$ 1.25 = (14 x) / 2	C1							
			C1 A1	[3]							
		(ii) smooth curve from $v = 2.5$ at $x = 0$ to $v = 0$ at Q curve with increasing gradient									

3	(a	-	gravitational PE is energy of a <u>mass</u> due to its position in a <u>gravitational field</u>								B1			
							<u>ed</u> (in an object) <u>due to</u> (a force) changing its shape / mpressed / stretched / strained						B1	[2]
	(b)) (i) 1. kinetic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.065 \times 16^2 = 8.3(2) \text{ J}$									C1 A1	[2]		
	2. $v^2 = 2gh$ OR PE = mgh h = $16^2 / (2 \times 9.81) = 13(.05)$ m									C1 A1	[2]			
		(ii)	K	E is	1⁄4		me = 8 (ms ratio = 3	-1)	or	total $t = 1.63$ h at $t_{1/2} = 9.78$ ratio = 9.78 /		ōs	C1 C1 A1	[3]
	(iii) time is less because (average) acceleration is greater OR average for is greater								orce	B1	[1]			
4	 (a) loss in potential energy due to decrease in height (as P.E. = mgh) gain in kinetic energy due to increase in speed (as K.E. = ½ mv²) special case 'as PE decreases KE increases' (1/2) increase in thermal energy due to work done against air resistance loss in P.E. equals gain in K.E. and thermal energy 						r	(B1 (B1 (B1) (B1) max. 3	[3]					
	(b) (i) kinetic energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.150 \times (25)^2$ = 46.875 = 47 J (ii) 1. potential energy (= mgh) = 0.150 × 9.81 × 21 loss = KE - mgh = 46.875 - (30.9) = 15.97 = 16 J								C1 C1 A					
									C1 C1 A1					
	2. work done = 16 J work done = force × distance F = 16 / 21 = 0.76 N									C1 A	[2]			

asherrana@chemistryonlinetuition.com

(a) (i) accelerations (A to 8 and 8 to C) are same magnitude 81 accelerations (A to 8 and 8 to C) are opposite directions or both accelerations are toward 8 81 (A to 8 and 8 to C) the component of the weight down the slope provides the acceleration 81 [3] (ii) acceleration = $gsin15^{\circ}$ Cl $s = 0 + \frac{1}{2}af$ $s = 0.26/sin15^{\circ} = 1.0$ C1 $\frac{1.0 \times 2}{9.8 \times \sin 15^{\circ}}$ t = 0.89s *t*² A1 [3] (iii) **v**= 0 + gsin15tor.; = 0 + 2gsin15 x 1.0 C1 v=2.26ms-' A1 [2] (using loss of GPE = gain KE can score full marks) (b) loss of GPE at A = gain in GPE at C or loss of KE at 8 = gain in GPE at C $h_2 = 0.26 \text{ mor } \frac{1}{2} \frac{m}{2} = \frac{mgh}{h_2} = 0.5 \text{ x} (2.26)^2 / 9.81 = 0.26 \text{ m}$ 81 $x = 0.261 \text{ sin } 30^{\circ} = 0.52 \text{ m}$ A1 [2]

5