Work, Energy & Power Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Work, Energy & Power
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 3
Time Allowed:	56 minutes
Score:	/46
Percentage:	/100
A* A	B C D E U
>85% '77.5%	70% 62.5% 57.5% 45% <45%

1	(a)	 a) electrical potential energy (stored) when charge moved and gravitational potential energy (stored) when mass moved due to work done in electric field and work done in gravitational field 			
	(b)	wo ane <i>m</i> g	rk done = force × distance moved (in direction of force) d force = mg v × h or $mg × \Delta h$	M1 A1	[2]
	(c)	(i)	$0.1 \times mgh = \frac{1}{2} mv^2$ $0.1 \times m \times 9.81 \times 120 = 0.5 \times m \times v^2$ $v = 15.3 \mathrm{m s^{-1}}$	B1 B1 A0	[2]
		(ii)	$P = 0.5 m v^{2} / t$ m / t = 110 × 10 ³ / [0.25 × 0.5 × (15.3) ²] = 3740 kg s ⁻¹	C1 C A1	[3]
2	(a	(i)	force is rate of change of momentum	B1	[1]
		(ii)	work done is the product of the force and the distance <u>moved</u> in the direction of the force	B1	[1]
	(b)	(i)	$W = Fs$ or $W = mas$ or $W = m(v^2 - u^2)/2$ or $W =$ force × distance s	A1	[1]
		(ii)	as = $(v^2 - u^2)/2$ any subject $W = mas$ hence $W = m(v^2 - u^2)/2$ RHS represents terms of energy or with $u = 0$ KE = $\frac{1}{2}mv^2$	M1 M1 A1	[3]
	(c)	(i)	work done = $\frac{1}{2} \times 1500 \times [(30)^2 - (15)^2]$ (=506250) distance = WD / F = 506250 / 3800 = 133 m or F = ma a = 2.533 (m s ⁻²) $v^2 = u^2 + 2as$ s = 133 m	C1 A1 C1 A1	[2]
		(ii)	the change in kinetic energy is greater or the work done by the force has to be greater, hence distance is greater (for same force)	A1	[1

allow: same acceleration, same time, so greater average speed and greater distance

3	(a	work done is the force × the distance moved / displacement in the direction of the force						
		woi	k is done when a f	orce moves in the direction of the force	B1	[1]		
	(b)	con (<i>us</i>	nponent of weight : : e of incorrect trigon	= 850 × 9.81 × sin 7.5° = 1090 N pometric function, 0/2)	C1 A1	[2]		
	(c)		$\Sigma F = 4600 - 1090$ deceleration = 35 = 4.1	0 = (3510) 10 / 850 m s ⁻²	M1 A1 A0	[2]		
		(ii)	$v^2 = u^2 + 2as$ $0 = 25^2 + 2 \times -4$.1 × s	C1			
			= 76 m (allow full credit fo	r calculation of time (6.05 s) & then s)	A1	[2]		
		(iii)	1. kinetic energy	$u = \frac{1}{2} mv^2$ = 0.5 × 850 × 25 ²	C1			
				$= 2.7 \times 10^5 \text{ J}$	A1	[2]		
			2. work done	= 4600×75.7 = 3.5×10^5 J	A1	[1]		
		(iv)	difference is the lo	oss in potential energy (<i>owtte</i>)	В	[1]		

<u>CHEMISTRYONLINE</u> — TUITION —

4	(a ((i) work done equals force × distance moved / displacement in the direction o the force 			B1	[1]
	(i	i)	power is the rate of doing work / work done per unit time			[1]
	(b) (i)	kinetic energy	$= \frac{1}{2} mv^{2}$ = 0.5 × 600 (9.5) ² = 27075 (J) = 27 kJ	C1 C1 A1	[3]
	(i	i)	potential energy	= mgh = 600 × 9.81 × 4.1 = 24132 (J) = 24 kJ	M1 A1 A0	[2]
	(ii	i)	work done = 27 –	24 = 3.0 kJ	A1	[1]
	(iv	()	resistive force = 3 = 3	3000 / 8.2 (distance along slope = 4.1 / sin 30°) 366 N	C1 A1	[2]
5	(a	(i)	potential energy	: stored energy available to do work	B1	[1]
	((ii)) gravitational: due to height/position of mass OR distance from mass OR moving mass from one point to another elastic: due to deformation/stretching/compressing			[2]
	(b)		height raised = (energy = (<i>mgh</i> =	$61 - \{61 \cos 18\} =$) 3.0 cm = 0.051 × 9.8 × 0.030 =) 1.5 × 10 ⁻² J	C1 A1	[2]
	((ii)	moment = force = 0.051 = 0.094	× perpendicular distance × 9.8 × 0.61 × sin18 N m	C1 A1	[2]