Work, Energy & Power

Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Work, Energy & Power
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed: 48 minutes

Score: /40

Percentage: /100

CHEMISTRY ONLINE

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) (i) (change in) potential energy= mgh C1 $= 0.056 \times 9.8 \times 16$ = 8.78 **J** (allow 8.8) A1 [2] (ii) (initial) kinetic energy= 1/2mv2 C1 $= \frac{1}{2} \times 0.056 \times 18^{2}$ = 9.07 **J** (allow 9.1) CI total kinetic energy= 8.78 + 9.07 = 17.9 J A1 [3] (b) kinetic energy= 1/2mv2 $17.9 = \frac{1}{2} \times 0.056 \times \frac{1}{2}$ and $\mathbf{v} = 25(.3) \text{ m s}^{-1}$ **B**1 [1] (c) horizontal velocity= 18 m s⁻¹ B1 [1] (d) (i) correct shape of diagram (two sides of right-angled triangle with correct orientation) B1 (ii) angle = 41° ♦ 48° (allow trig. solution based on diagram) A2 [3] (for angle 38°-,, 41 °or 48°-,, 51°, allow 1 mark)

— TUITION —

_ (-,	(ii)	(by force) in the direction of the force work (done) per unit time (idea of ratio needed)	A1 B1	[2] [1]	
(b)		<pre>either work/time or power = (force × distance)/time to give power = force × velocity</pre>	M1 A1	[2]	
(c)	(i) (ii)	kinetic energy (= $\frac{1}{2}mv^2$) = $\frac{1}{2} \times 1900 \times 27^2$ power = $692550 / 8.1 = 8.55 \times 10^4$ W either for equal increments of speed, increments of E_K are different so longer time (to increase speed) at high speeds or air resistance increases with speed (M1) so driving force (and acceleration) reduced (A1) or $P = Fv = mav$ (M1) ($P = mav = ma$	C1 A1 M1 A1	[2] [2]	
3	(a)	product of force and distance moved in the direction of the force		M1 A1	[2]
	(b)	falls from rest			

product of force and distance moved

decreasing acceleration

(ii)

reaches a constant speed

straight line with negative gradient

y-axis intercept above maximum E_{K}

2 (a)

(i)

reasonable gradient (same magnitude as that for E_K initially)

M1

В1

B1

B1

B1

B1

[3]

[3]

4	(a) ($\Delta E_{p} = mg\Delta h$ $= 0.602 \times 9.8 \times 0.086$			
		= 0.502 × 9.6 × 0.086 = 0.51 J (do not allow g = 10, m = 0.600 or answer 0.50 J)	A1	[2]	
	(ii)	$v^2 = (2gh =) 2 \times 9.8 \times 0.086 \text{ or } (2 \times 0.51)/0.602$ $v = 1.3 \text{ (m s}^{-1)}$	M1 A0	[1]	
	(b)	$2 \times V = 602 \times 1.3$ (allow 600) $V = 390 \text{ m s}^{-1}$	C1 A1	[2]	
	(c) (i	$E_{k} = \frac{1}{2}mv^{2}$ = $\frac{1}{2} \times 0.002 \times 390^{2}$ = 152 J or 153 J or 150 J	C1 A1	[2]	
	(ii)	E_k not the same/changes or E_k before impact> E_k after/ E_p after so must be inelastic collision (allow 1 mark for 'bullet embeds itself in block' etc.)	M1 A1	[2]	
5	(a)	force x distance moved in the direction of the force		M1 A1	[2]

CHEMISTRYONLINE

weight/ force = mg M1

(b)

[2]