## Work, Energy & Power Mark Scheme 5

| Level                   | International A Level |  |  |  |  |
|-------------------------|-----------------------|--|--|--|--|
| Subject                 | Physics               |  |  |  |  |
| Exam Board              | CIE                   |  |  |  |  |
| Торіс                   | Work, Energy & Power  |  |  |  |  |
| Sub Topic               |                       |  |  |  |  |
| Paper Type              | Theory                |  |  |  |  |
| Booklet                 | Mark Scheme 5         |  |  |  |  |
|                         |                       |  |  |  |  |
| Time Allowed:<br>Score: | 70 minutes<br>/58     |  |  |  |  |
| Time Allowed:           |                       |  |  |  |  |
| Time Allowed:<br>Score: | /58<br>/100           |  |  |  |  |
| Time Allowed:<br>Score: | /58                   |  |  |  |  |

| 1 | (a | power = work/time or energy/time or (force × distance)/time | B1 |
|---|----|-------------------------------------------------------------|----|
|---|----|-------------------------------------------------------------|----|

$$= \text{kgm} \text{s}^{-2} \times \text{m} \text{s}^{-1} = \text{kgm}^2 \text{s}^{-3}$$
 A1 [2]

(b) power = VI [or 
$$V^2/R$$
 and  $V = IR$  or  $I^2R$  and  $V = IR$ ] B1

| 2 | (a ( | (i)  | two sets of co-ordinates taken to determine a constant value $(F/x)$                                        | M1           |     |
|---|------|------|-------------------------------------------------------------------------------------------------------------|--------------|-----|
|   |      |      | <i>F/x</i> constant hence obeys Hooke's law                                                                 | A1           | [2] |
|   |      |      | <i>or</i><br>gradient calculated and one point on line used<br>to show no intercept hence obeys Hooke's law | (M1)<br>(A1) |     |
|   | (    | ii)  | gradient or one point on line used e.g. $4.5/1.8 \times 10^{-2}$                                            | C1           |     |
|   |      |      | $(k =) 250 \mathrm{N}\mathrm{m}^{-1}$                                                                       | A1           | [2] |
|   | (i   | ii)  | work done or $E_{\rm P}$ = area under graph or $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$                         | C1           |     |
|   |      |      | = $0.5 \times 4.5 \times 1.8 \times 10^{-2}$ or $0.5 \times 250 \times (1.8 \times 10^{-2})^2$              | C1           |     |
|   |      |      | = 0.041 (0.0405) J                                                                                          | A1           | [3] |
|   | (b)  | KE   | $= 1/_2 m v^2$                                                                                              |              |     |
|   | 1    | ¹⁄₂m | $v^2 = 0.0405 \text{ or KE} = 0.0405 (J)$                                                                   | C1           |     |
|   | (    | (v = | $= [2 \times 0.0405 / 1.7]^{1/2} = 0.22 (0.218) \text{ m s}^{-1}$                                           | A1           | [2] |

| 3 | (a  | (i)   | straight line from $t = 0.60$ s to $t = 1.2$ s and $ V_v  = 5.9$ at $t = 1.2$ s<br>$V_v = -5.9$ at $t = 1.2$ s i.e. line is for negative values of $V_v$             | M1<br>A1 | [2] |
|---|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|   |     | (ii)  | $s = 0 + \frac{1}{2} \times 9.81 \times (0.6)^2$ or area of graph = $(5.9 \times 0.6) / 2$                                                                           | C1       |     |
|   |     |       | = 1.8 (1.77) m = 1.8 (1.77) m                                                                                                                                        | A1       | [2] |
|   |     | (iii) | $V_{\rm h} = V \cos 60^{\circ} \text{ and } V_{\rm v} = V \sin 60^{\circ} \text{ or } V_{\rm h} = 5.9 / \tan 60^{\circ} \text{ or } V_{\rm h} = 5.9 \tan 30^{\circ}$ | C1       |     |
|   |     |       | $V_{\rm h} = 3.4{\rm ms^{-1}}$                                                                                                                                       | A1       | [2] |
|   |     | (iv)  | horizontal line at 3.4 from $t = 0$ to $t = 1.2$ s [to half a small square]                                                                                          | B1       | [1] |
|   | (b) | (i)   | $KE = \frac{1}{2}mv^2$                                                                                                                                               | C1       |     |
|   |     |       | = $\frac{1}{2} \times 0.65 \times (6.81)^2$ [allow if valid method to find v]                                                                                        | C1       |     |
|   |     |       | = 15 (15.1)J                                                                                                                                                         | A1       | [3] |
|   |     | (ii)  | PE = 0.65 × 9.81 × 1.77                                                                                                                                              | C1       |     |
|   |     |       | = 11(11.3) J                                                                                                                                                         | A1       | [2] |
|   |     |       |                                                                                                                                                                      |          |     |

CHEMISTRY ONLINE — TUITION —

| 4 | (a          |                    | a system (of interacting bodies) the <u>total</u> momentum remains constant<br>vided there is no <u>resultant</u> force acting (on the system)                                                                                                                                                         | M1<br>A1       | [2] |
|---|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
|   | (b)         | (i)                | total momentum = $m_1v_1 + m_2v_2$<br>= 0.4 × 0.65 + 0.6 × 0.45<br>= 0.26 + 0.27 = 0.53 N s                                                                                                                                                                                                            | C1<br>C1<br>A  | [3] |
|   |             | (ii)               | $0.53 = 0.4 \times 0.41 + 0.6 \times v$                                                                                                                                                                                                                                                                | C1             |     |
|   |             |                    | $v = 0.366 / 0.6 = 0.61 \mathrm{m  s^{-1}}$                                                                                                                                                                                                                                                            | A1             | [2] |
|   |             | (iii)              | KE = $\frac{1}{2}mv^2$<br>total initial KE = $\frac{1}{2} \times 0.4 \times (0.65)^2 + \frac{1}{2} \times 0.6 \times (0.45)^2$<br>= 0.0845 + 0.06075 = 0.15 (0.145) J                                                                                                                                  | C1<br>C1<br>A  | [3] |
|   | (c)         | che<br><i>or</i> : | ck relative speed of approach equals relative speed of separation                                                                                                                                                                                                                                      |                |     |
|   |             |                    | I final kinetic energy equals the total initial kinetic energy                                                                                                                                                                                                                                         | B1             | [   |
|   | (d)         |                    | forces on the two bodies (or on X and Y) are equal and opposite<br>a same for both forces <u>and</u> force is change in momentum/time                                                                                                                                                                  | B1             | [2] |
| 5 | (a p        | oowe               | r = energy / time<br>= (force × distance / time) = kg m <sup>2</sup> s <sup>-2</sup> / s<br>= kg m <sup>2</sup> s <sup>-3</sup>                                                                                                                                                                        | C1<br>C1<br>A1 | [3] |
|   | (b) (       |                    | inits of $L^2$ : m <sup>2</sup> and units of $\rho$ : kg m <sup>-3</sup> and units of $v^3$ : m <sup>3</sup> s <sup>-3</sup><br>C = P / L <sup>2</sup> $\rho v^3$ ) hence units of C: kg m <sup>2</sup> s <sup>-3</sup> m <sup>-2</sup> kg <sup>-1</sup> m <sup>3</sup> m <sup>-3</sup> s <sup>3</sup> | C1             |     |
|   |             |                    | or any correct statement of component units<br>argument /discussion / cancelling leading to <i>C</i> having no units                                                                                                                                                                                   | M1<br>A1       | [3] |
|   | (1          | V                  | power available from wind = $3.5 \times 10^5 \times 100 / 55$ (= $6.36 \times 10^5$ )<br>$3^3 = 3.5 \times 10^5 \times 100 / (55 \times 0.931 \times (25)^2 \times 1.3)$<br>$x = 9.4 \text{ m s}^{-1}$                                                                                                 | C<br>C1<br>A1  | [3] |
|   | <b>(i</b> i |                    | ot all kinetic energy of wind converted to kinetic energy of blades                                                                                                                                                                                                                                    | B1             |     |
|   |             | p                  | enerator / conversion to electrical energy not 100% efficient / heat<br>produced in generator / bearings etc<br>there must be cause of loss and where located)                                                                                                                                         | B1             | [2] |

| 6 | (a (i) | the total momentum of a system (of interacting bodies) remains constant provided there are no resultant external forces / isolated system                                                                                                                                                                                          | M1<br>A1       | [2] |
|---|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
|   | (ii)   | elastic: total kinetic energy is conserved, inelastic: loss of kinetic energy<br>[allow elastic: relative speed of approach equals relative speed of separation]                                                                                                                                                                   | B1             | [1] |
|   | (b) (  | ) initial mom: $4.2 \times 3.6 - 1.2 \times 1.5$ (= $15.12 - 1.8 = 13.3$ )<br>final mom: $4.2 \times v + 1.5 \times 3$<br>$v = (13.3 - 4.5) / 4.2 = 2.1 \text{ m s}^{-1}$                                                                                                                                                          | C1<br>C1<br>A1 | [3] |
|   | (i     | ) initial kinetic energy = $\frac{1}{2} m_A (v_A)^2 + \frac{1}{2} m_B (v_B)^2$<br>= 27.21 + 1.08 = 28(.28)<br>final kinetic energy = 9.26 + 6.75 = 16<br>initial KE is not the same as final KE hence inelastic<br><i>provided final KE less than initial KE</i><br>[allow in terms of relative speeds of approach and separation] | M1<br>M1<br>A1 | [3] |



## <u>CHEMISTRY ONLINE</u> — TUITION —