Work, Energy \& Power
 Mark Scheme 5

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Work, Energy \& Power
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 5

Time Allowed:	70 minutes						
Score:	/58						
Percentage:	/100						
A	A	B	C	D	E	U	
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$	

1 (a power = work/time or energy/time or (force \times distance)/time

$$
=\mathrm{kg} \mathrm{~ms}^{-2} \times \mathrm{ms}^{-1}=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}
$$

(b) power $=V I\left[\right.$ or V^{2} / R and $V=I R$ or $I^{2} R$ and $\left.V=I R\right]$
(a (i) two sets of co-ordinates taken to determine a constant value (F / x)
or gradient calculated and one point on line used to show no intercept hence obeys Hooke's law
(ii) gradient or one point on line used e.g. 4.5/1.8 $\times 10^{-2}$

$$
(k=) 250 \mathrm{Nm}^{-1}
$$

(iii) work done or $E_{P}=$ area under graph or $1 / 2 F x$ or $1 / 2 k x^{2}$

$$
\begin{aligned}
& =0.5 \times 4.5 \times 1.8 \times 10^{-2} \text { or } 0.5 \times 250 \times\left(1.8 \times 10^{-2}\right)^{2} \\
& =0.041(0.0405) \mathrm{J}
\end{aligned}
$$

(b) $\mathrm{KE}=1 / 2 m v^{2}$

$$
1 / 2 m v^{2}=0.0405 \text { or } \mathrm{KE}=0.0405(\mathrm{~J})
$$

$\left(v=[2 \times 0.0405 / 1.7]^{1 / 2}=\right) 0.22(0.218) \mathrm{m} \mathrm{s}^{-1}$
(ii) $s=0+1 / 2 \times 9.81 \times(0.6)^{2} \quad$ or area of graph $=(5.9 \times 0.6) / 2 \quad \mathrm{C} 1$ $=1.8(1.77) \mathrm{m} \quad=1.8(1.77) \mathrm{m} \quad$ A1
(iii) $V_{\mathrm{h}}=V \cos 60^{\circ}$ and $V_{\mathrm{v}}=V \sin 60^{\circ}$ or $V_{\mathrm{h}}=5.9 / \tan 60^{\circ}$ or $V_{\mathrm{h}}=5.9 \tan 30^{\circ} \mathrm{C} 1$
$V_{\mathrm{h}}=3.4 \mathrm{~m} \mathrm{~s}^{-1}$
(iv) horizontal line at 3.4 from $t=0$ to $t=1.2 \mathrm{~s} \quad$ [to half a small square]

$$
\begin{aligned}
& \left.=1 / 2 \times 0.65 \times(6.81)^{2} \quad \text { [allow if valid method to find } v\right] \\
& =15(15.1) \mathrm{J}
\end{aligned}
$$

(b) (i) $\mathrm{KE}=1 / 2 m v^{2}$
C1
(ii) $\mathrm{PE}=0.65 \times 9.81 \times 1.77$ $=11(11.3) \mathrm{J}$ C1

A1

A1

4 (a for a system (of interacting bodies) the total momentum remains constant
(b) (i) total momentum $=m_{1} v_{1}+m_{2} v_{2}$

$$
\begin{array}{ll}
=0.4 \times 0.65+0.6 \times 0.45 & \mathrm{C} 1 \\
=0.26+0.27=0.53 \mathrm{Ns} & \mathrm{~A}
\end{array}
$$

(ii) $0.53=0.4 \times 0.41+0.6 \times v$

$$
v=0.366 / 0.6=0.61 \mathrm{~m} \mathrm{~s}^{-1}
$$

(iii) $\mathrm{KE}=1 / 2 m v^{2}$
total initial KE $=1 / 2 \times 0.4 \times(0.65)^{2}+1 / 2 \times 0.6 \times(0.45)^{2}$

$$
=0.0845+0.06075=0.15(0.145) \mathrm{J}
$$

(c) check relative speed of approach equals relative speed of separation or: total final kinetic energy equals the total initial kinetic energy
(d) the forces on the two bodies (or on X and Y) are equal and opposite time same for both forces and force is change in momentum/time
(a power = energy / time

$$
\begin{aligned}
& =(\text { force } \times \text { distance } / \text { time })=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} / \mathrm{s} \\
& =\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}
\end{aligned}
$$ C1

(b) (i) units of $L^{2}: \mathrm{m}^{2}$ and units of $\rho: \mathrm{kg} \mathrm{m}^{-3}$ and units of $v^{3}: \mathrm{m}^{3} \mathrm{~s}^{-3}$
$\left(C=P / L^{2} \rho v^{3}\right.$) hence units of $C: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~m}^{-2} \mathrm{~kg}^{-1} \mathrm{~m}^{3} \mathrm{~m}^{-3} \mathrm{~s}^{3}$ or any correct statement of component units
(ii) power available from wind $=3.5 \times 10^{5} \times 100 / 55\left(=6.36 \times 10^{5}\right)$ C
$v^{3}=3.5 \times 10^{5} \times 100 /\left(55 \times 0.931 \times(25)^{2} \times 1.3\right)$ C1 $v=9.4 \mathrm{~m} \mathrm{~s}^{-1}$
(iii) not all kinetic energy of wind converted to kinetic energy of blades generator / conversion to electrical energy not 100\% efficient / heat produced in generator / bearings etc B1 (there must be cause of loss and where located)
(a (i) the total momentum of a system (of interacting bodies) remains constant
(ii) elastic: total kinetic energy is conserved, inelastic: loss of kinetic energy B1 [allow elastic: relative speed of approach equals relative speed of separation]
(b) (i) initial mom: $4.2 \times 3.6-1.2 \times 1.5 \quad(=15.12-1.8=13.3)$

C1
final mom: $4.2 \times v+1.5 \times 3$ C1 $v=(13.3-4.5) / 4.2=2.1 \mathrm{~m} \mathrm{~s}^{-1}$ A1
(ii) initial kinetic energy $=1 / 2 m_{\mathrm{A}}\left(v_{\mathrm{A}}\right)^{2}+1 / 2 m_{\mathrm{B}}\left(v_{\mathrm{B}}\right)^{2}$

$$
=27.21+1.08=28(.28)
$$

final kinetic energy $=9.26+6.75=16 \quad$ M1
initial KE is not the same as final KE hence inelastic A1 provided final $K E$ less than initial KE [allow in terms of relative speeds of approach and separation]

