Work, Energy \& Power
 Mark Scheme 6

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Work, Energy \& Power
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 6

1
(a (i) $v^{2}=u^{2}+2 a s$

$$
\begin{aligned}
& =(8.4)^{2}+2 \times 9.81 \times 5 \\
& =12.99 \mathrm{~m} \mathrm{~s}^{-1} \text { (allow } 13 \text { to } 2 \text { s.f. but not } 12.9 \text {) }
\end{aligned}
$$

(ii) $t=(v-u) / a$ or $s=u t+1 / 2 a t^{2}$

| | $=(12.99-8.4) / 9.81$ or $5=8.4 t+1 / 2 \times 9.81 t^{2}$ |
| ---: | :--- |\quad M1

(b) reasonable shape M1
suitable scale A1
correctly plotted $1^{\text {st }}$ and last points at $(0,8.4)$ and $(0.88-0.96,0)$ with non-vertical line at 0.47 s
A1
(c) (i) 1. kinetic energy at end is zero so $\Delta \mathrm{KE}=1 / 2 m v^{2}$ or $\Delta \mathrm{KE}=1 / 2 m u^{2}-1 / 2 m v^{2} \quad \mathrm{C} 1$

$$
\begin{aligned}
& =1 / 2 \times 0.05 \times(8.4)^{2} \\
& =(-) 1.8 \mathrm{~J}
\end{aligned}
$$

2. final maximum height $=(4.2)^{2} /(2 \times 9.8)=(0.9(\mathrm{~m}))$ change in PE $=m g h_{2}-m g h_{1}$ C1 $\begin{array}{ll}=0.05 \times 9.8 \times(0.9-5) & \text { C1 } \\ =(-) 2.0 \mathrm{~J} & \text { A1 }\end{array}$
(ii) change is - $3.8(\mathrm{~J})$ B1
energy lost to ground (on impact) / energy of deformation of the ball / thermal energy in ball B1
(c) $=1 / 2 \times 0.05 \times(8.4)^{2}$
A1
(a) electric field strength is the force per unit positive charge (acting on a stationary charge)
(b) (i) $E=V / d$

$$
\begin{aligned}
& =1200 / 14 \times 10^{-3} \\
& =8.57 \times 10^{4} \mathrm{Vm}^{-1}
\end{aligned}
$$

A1
(v) $K=1 / 2 m v^{2}$

$$
v=\left[\left(2 \times 3.8 \times 10^{-16}\right) / 6.6 \times 10^{-27}\right]^{1 / 2}
$$

$$
=3.4 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}
$$

3 (a (i) horizontal velocity $=15 \cos 60^{\circ}=7.5 \mathrm{~ms}^{-1}$
A1 [1]
(ii) vertical velocity $=15 \sin 60^{\circ}=13 \mathrm{~ms}^{-1}$
(b) (i) $v^{2}=u^{2}+2 a s$

$$
\begin{equation*}
s=(13)^{2} /(2 \times 9.81)=8.6(1) \mathrm{m} \tag{1}
\end{equation*}
$$

using $g=10$ then max. 1
(ii) $t=13 / 9.81=1.326 \mathrm{~s}$ or $t=9.95 / 7.5=1.327 \mathrm{~s}$

A1 [1]
(iii) velocity $=6.15 / 1.33$

M1

$$
\begin{equation*}
=4.6 \mathrm{~m} \mathrm{~s}^{-1} \tag{1}
\end{equation*}
$$

A0
(c) (i) change in momentum $=60 \times 10^{-3}[-4.6-7.5]$ C1

$$
=(-) 0.73 \mathrm{Ns}
$$

A1
(ii) final velocity / kinetic energy is less after the collision or relative speed of separation < relative speed of approach M1 hence inelastic A0
4 (a (i) power = work done per unit time / energy transferred per unit time / rate of work done B1 [1
(ii) Young modulus $=$ stress $/$ strainB1 [1]
(b) (i) 1. $E=T /(A \times$ strain) (allow strain $=\varepsilon)$ C1
$T=E \times A \times$ strain $=2.4 \times 10^{11} \times 1.3 \times 10^{-4} \times 0.001$ M1
$=3.12 \times 10^{4} \mathrm{~N}$ A0
2. $\quad T-W=m a$ C1
$\left[3.12 \times 10^{4}-1800 \times 9.81\right]=1800 a$ C1
$a=7.52 \mathrm{~ms}^{-2}$ A1
(ii) 1. $T=1800 \times 9.81=1.8 \times 10^{4} \mathrm{~N}$
2. potential energy gain $=m g h$

$$
=1800 \times 9.81 \times 15
$$

$$
=2.7 \times 10^{5} \mathrm{~J}
$$

(iii) $P=F V$

$$
=1800 \times 9.81 \times 0.55
$$

5 (a either energy (stored)/work done represented by area under graph or energy $=$ average force \times extension
energy $=1 / 2 \times 180 \times 4.0 \times 10^{-2}$

$$
=3.6 \mathrm{~J}
$$A1

(b) (i) either momentum before release is zero M1
so sum of momenta (of trolleys) after release is zero A1
or force $=$ rate of change of momentum (M1)
force on trolleys equal and opposite (A1)
or impulse = change in momentum (M1)
impulse on each equal and opposite (A1)
[2]
(ii) $1 M_{1} V_{1}=M_{2} V_{2}$[1]
$2 \underline{E}=1 / 2 M_{1} V_{1}^{2}+1 / 2 M_{2} V_{2}^{2}$ B1[1](iii) $E_{K}=1 / 2 m v^{2}$ and $p=m v$ combined to give$E_{\mathrm{K}}=p^{2} / 2 m$A0
2 m smaller, E_{K} is larger because p is the same/constant M1
so trolley B A0[1]

6 (a evidence of use of area below the line distance $=39 \mathrm{~m}$ (allow $\pm 0.5 \mathrm{~m}$)

A (if $> \pm 0.5 \mathrm{~m}$ but $\leq 1.0 \mathrm{~m}$, then allow 1 mark)
(b) (i) $1 E_{K}=1 / 2 m v^{2} \quad \mathrm{C} 1$
$\Delta E_{K}=1 / 2 \times 92 \times\left(6^{2}-3^{2}\right)$ $=1240 \mathrm{~J}$
$2 E_{P}=m g h \quad$ C1 $\Delta E_{P}=92 \times 9.8 \times 1.3$ $=1170 \mathrm{~J}$
(ii) $\begin{array}{ll}E=P t & C 1 \\ E=75 \times 8 & \end{array}$ 000」 $=600 \mathrm{~J}$
(c) (i) energy $=(1240+600)-1170$ $=670 \mathrm{~J}$
(ii) force $=670 / 39=17 \mathrm{~N}$
(d) frictional forces include air resistance air resistance decreases with decrease of speed

A1 A1 B1 B1
[2]

A

M1
A

A

