## Motion in a Circle <br> Mark Scheme 1

| Level | International A Level |
| :--- | :--- |
| Subject | Physics |
| Exam Board | CIE |
| Topic | Motion in a circle |
| Sub Topic |  |
| Paper Type | Theory |
| Booklet | Mark Scheme 1 |


| Time Allowed: | 60 minutes |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Score: | /50 |  |  |  |  |
| Percentage: | /100 |  |  |  |  |
| A* A | B | C | D | E | U |
| >85\% '77.5\% | 70\% | 62.5\% | 57.5\% | 45\% | <45\% |

(a) ( $F=R \cos \theta$
$W=R \sin \theta$
(ii) provides the centripetal force
(b) either $F=m v^{2} / r$ and $W=m g$
or $v^{2}=r g / \tan \theta$
$v^{2}=\left(14 \times 10^{-2} \times 9.8\right) / \tan 28^{\circ}$ C1
$=2.58$
$v=1.6 \mathrm{~ms}^{-1}$
A1

2 (a angle subtended at the centre of a circle B1 by an arc equal in length to the radius
(b) (i) arc $=$ distance $\times$ angle


$$
=3.7 \mathrm{~km}
$$

(ii) Mars is (much) further from Earth/away (answer must be comparative)

3 (a gravitational force provides the centripetal force
(b) (i) 1. for Phobos, $\omega=2 \pi /(7.65 \times 3600)$

$$
\begin{aligned}
& \left(9.39 \times 10^{6}\right)^{3} \times\left(2.28 \times 10^{-4}\right)^{2}=6.67 \times 10^{-11} \times M \\
& M=6.46 \times 10^{23} \mathrm{~kg}
\end{aligned}
$$

2. $\left(9.39 \times 10^{6}\right)^{3} \times\left(2.28 \times 10^{-4}\right)^{2}=\left(1.99 \times 10^{7}\right)^{3} \times \omega^{2}$
$T=2 \pi / \omega=2 \pi /\left(7.30 \times 10^{-5}\right)$
$=8.6 \times 10^{4} \mathrm{~s}$

$$
=23.6 \text { hours }
$$

(ii) either almost 'geostationary'
or satellite would take a long time to cross the sky
$4 \begin{array}{lll}\text { (a } & \text { (i) } \begin{array}{l}\text { rate of change of angle / angular displacement } \\ \text { swept out by radius }\end{array} & \text { M1 }\end{array}$
(ii) $\omega \times T=2 \pi$
(b) centripetal force is provided by the gravitational force B1
either $m r(2 \pi / T)^{2}=G M m / r^{2}$ or $m r \omega^{2}=G M m / r^{2}$
$r^{3} \times 4 \pi^{2}=G M \times T^{2}$
GM/4 $\pi^{2}$ is a constant (c)
$T^{2}=c r^{3}$
$T^{2}=c r^{3} \quad$ A0
(c) (i) either $T^{2}=(45 / 1.08)^{3} \times 0.615^{2}$ or $T^{2}=0.30 \times 45^{3}$ $T=165$ years
(ii) speed $=\left(2 \pi \times 1.08 \times 10^{8}\right) /(0.615 \times 365 \times 24 \times 3600)$

$$
=35 \mathrm{~km} \mathrm{~s}^{-1}
$$

5 (a) angle (subtended) at centre of circle
(by) arc equal in length to radius
(b) (i) point S shown below C
(ii) (max) force / tension $=$ weight + centripetal force centripetal force $=m r \omega^{2}$ $15=3.0 / 9.8 \times 0.85 \times \omega^{2}$ $\omega=7.6 \mathrm{rad} \mathrm{s}^{-1}$

B1

M1
A1 C1

C1 C1 C1 C1
(a) (i) $F=G M m / R^{2}$
B1
(ii) $F=m R \omega^{2} \quad$ B1
(iii) reaction force $=G M m / R^{2}-m R \omega^{2} \quad$ (allow e.c.f.)
(b) ( either value of $R$ in expression $R \omega^{2}$ varies or $\quad m R \omega^{2}$ no longer parallel to $G M m / R^{2} /$ normal to surface B1 becomes smaller as object approaches a pole / is zero at pole B1
(ii) acceleration $=6.4 \times 10^{6} \times\left(2 \pi /\left\{8.6 \times 10^{4}\right\}\right)^{2} \quad$ C1

$$
=0.034 \mathrm{~m} \mathrm{~s}^{-2}
$$

A1
2. acceleration $=0$
(c) e.g. 'radius' of planet varies
density of planet not constant
planet spinning
nearby planets / stars
(any sensible comments, 1 mark each, maximum 2)
B2

