Motion in a Circle Mark Scheme 1

Level		nternational A Level		
Subject	Р	hysics		
Exam Board		IE		
Торіс	Ν	Notion in a circle		
Sub Topic				
Paper Type	T	heory		
Booklet	N	Nark Scheme 1		
Time Allowed:	60 minutes			
Score:	/50			
Percentage:	/100			
A* A	ВС	D	-E	U

1	(a)	($F = R \cos \theta$ $W = R \sin \theta$ dividing, $W = F \tan \theta$ (max. 1 if derivation to final line not shown)	M1 M1 A0	[2]
		(ii)	provides the centripetal force	B1	[1]
	(b)	eith or v v ² = v =	$er F = mv^2/r$ and $W = mg^2 = rg/\tan \theta$ = $(14 \times 10^{-2} \times 9.8)/\tan 28^\circ$ = 2.58 = $1.6 \mathrm{m s^{-1}}$	C1 C1 A1	[3]
2	(a	ang by a	gle subtended at the centre of a circle an arc equal in length to the radius	B1 B1	[2]
	(b)	(i)	$arc = distance \times angle$	C1	
			diameter = $3.8 \times 10^5 \times 9.7 \times 10^{-6}$ = 3.7 km	A1	[2]
		(ii)	Mars is (much) further from Earth/away (<i>answer must be comparative)</i> angle (at telescope is much) smaller	B1 B1	[2]
	,			5.4	
3	(a	gra GN r³a	Nitational force provides the centripetal force $Mm/r^2 = mr\omega^2$ (must be in terms of ω) $\omega^2 = GM$ and GM is a constant	В1 В В1	[3]
	(b)) (i)	1. for Phobos, $\omega = 2\pi/(7.65 \times 3600)$	C1	
			$(9.39 \times 10^6)^3 \times (2.28 \times 10^{-4})^2 = 6.67 \times 10^{-11} \times M$ $M = 6.46 \times 10^{23} \text{ kg}$	C1 A1	[3]
			2. $(9.39 \times 10^{6})^{3} \times (2.28 \times 10^{-4})^{2} = (1.99 \times 10^{7})^{3} \times \omega^{2}$ $\omega = 7.30 \times 10^{-5} \text{ rad s}^{-1}$ $T = 2\pi/\omega = 2\pi/(7.30 \times 10^{-5})$ $= 8.6 \times 10^{4} \text{ c}$	C1 C1	
			= 23.6 hours	A1	[3]
		(ii)	<i>either</i> almost 'geostationary' <i>or</i> satellite would take a long time to cross the sky	B1	[1]

4	(a	(i)	rate of change of angle / angular displacement swept out by radius		M1 A1	[2]
		(ii)	$\omega \times T = 2\pi$	I	B1	[1]
	(b)	cer eith r ³ : GN T ²	Intripetal force is provided by the gravitational force for $mr(2\pi/T)^2 = GMm/r^2$ or $mr\omega^2 = GMm/r^2$ $\times 4\pi^2 = GM \times T^2$ $M/4\pi^2$ is a constant (c) $= cr^3$		B1 M1 A1 A1 A0	[4]
	(c)	(i)	<i>either</i> $T^2 = (45/1.08)^3 \times 0.615^2$ or $T^2 = 0.30 \times 45^3$ <i>T</i> = 165 years		C1 A1	[2]
		(ii)	speed = $(2\pi \times 1.08 \times 10^8) / (0.615 \times 365 \times 24 \times 3600)$ = 35 km s ⁻¹		C1 A1	[2]
5	(a)	angl (by)	e (subtended) <u>at centre</u> of circle arc equal in length to radius	B1 B1	[2]
	(b)	(i)	point S shown below C	B1	[1]
		(ii)	(max) force / tension = weight + centripetal force centripetal force = $mr\omega^2$ 15 = $3.0/9.8 \times 0.85 \times \omega^2$ ω = 7.6 rad s ⁻¹	C1 C1 C1 A1	[4]

<u>CHEMISTRY ONLINE</u> — TUITION —

(a)	(i)	$F = GMm / R^2$	B1	[1]
((ii)	$F = mR\omega^2$	B1	[1]
(i	iii)	reaction force = $GMm / R^2 - mR\omega^2$ (allow e.c.f.)	B1	[1]
(b)	(either value of R in expression $R\omega^2$ varies		
		or $mR\omega^2$ no longer parallel to GMm / R^2 / normal to surface becomes smaller as object approaches a pole / is zero at pole	B1 B1	[2]
((ii)	acceleration = $6.4 \times 10^6 \times (2\pi / \{8.6 \times 10^4\})^2$	C1	[0]
		2. acceleration = 0	A1 A1	[2] [1]
(c) e	ə.g.	'radius' of planet <u>varies</u>		
		density of planet <u>not constant</u> planet spinning		
		nearby planets / stars		
		(any sensible comments, 1 mark each, maximum 2)	B2	[2]

<u>CHEMISTRY ONLINE</u> — TUITION —

6