Gravitational Fields Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Gravitational Fields
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	66 minutes				
Score:	/55				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a) (gravitational) force proportional to product of masses and inversely proportional to square of separation
reference to either point masses or particles or 'size' much less than separation A1
[2]
(b) gravitational force provides/is the centripetal force
$G M_{N} m / r^{2}=m r \omega^{2}\left(\right.$ or $\left.m v^{2} / r\right)$
M
$2 \pi / T($ or $v=2 \pi r / T)$ leading to $G M_{N}=4 \pi^{2} r^{3} / T^{2} \quad$ A1
[3]
(c) $M_{N} / M_{U}=(3.55 / 5.83)^{3} \times(13.5 / 5.9)^{2}$
x^{3} factor correct
C1
T^{2} factor correct C1
ratio $=1.18$ (allow 1.2)
A1
alternative method: mass of Neptune $=1.019 \times 10^{26} \mathrm{~kg}$
mass of Uranus $=8.621 \times 10^{25} \mathrm{~kg}$ ratio $=1.18$

2
(a) $\left(\right.$ 1. $F=G m_{1} m_{2} / X^{2}$

$$
\begin{aligned}
& =\left(6.67 \times 10^{-11} \times 2.50 \times 5.98 \times 10^{24}\right) /\left(6.37 \times 10^{6}\right)^{2} \\
& =24.6 \mathrm{~N} \text { (accept } 2 \text { s.f. or more })
\end{aligned}
$$

M1
2. $F=m x \omega^{2}$ or $F=m v^{2} / x$ and $v=\omega x$ (accept x or r for distance)

C1

$$
=2.50 \times 6.37 \times 10^{6} \times(2 \pi / 24 \times 3600)^{2}
$$

A
$\begin{array}{rlrl}\text { (ii) } & \begin{aligned} \text { reading } & =24.575-0.0842 \\ & \\ & =24.5 \mathrm{~N} \text { (accept only } 3 \text { s.f. })\end{aligned} & \mathrm{B} 1 \\ & \end{array}$
(b) gravitational force provides the centripetal force
gravitational force is 'equal' to the centripetal force (accept $\mathrm{Gm}_{1} m_{2} / x^{2}=m x \omega^{2}$ or $F_{\mathrm{C}}=F_{\mathrm{G}}$) M
'weight'/sensation of weight/contact force/reaction force is difference between F_{G} and F_{C} which is zero

$$
=0.0842 \mathrm{~N} \text { (accept } 2 \text { s.f. or more) }
$$

(a) $\begin{aligned} g & =G M / R^{2} \\ & =\left(6.67 \times 10^{-11} \times 6.4 \times 10^{23}\right) /\left(3.4 \times 10^{6}\right)^{2}=3.7 \mathrm{Nkg}^{-1}\end{aligned}$

C1
because $\Delta h \ll R$ (or $\left.1800 \mathrm{~m} \ll 3.4 \times 10^{6} \mathrm{~m}\right) \mathrm{g}$ is constant
$=1.6 \times 10^{4} \mathrm{~J}$
(use of $g=9.8 \mathrm{~ms}^{-2}$ max. 1 for explanation)
(c) gravitational potential energy $=(-) G M m / x$
$v^{2}=2 G M / x$
$x=4 D=4 \times 6.8 \times 10^{6}$
$v^{2}=\left(2 \times 6.67 \times 10^{-11} \times 6.4 \times 10^{23}\right) /\left(4 \times 6.8 \times 10^{6}\right)$
$=3.14 \times 10^{6}$
$v=1.8 \times 10^{3} \mathrm{~ms}^{-1}$
(use of $3.5 D$ giving $1.9 \times 10^{3} \mathrm{~ms}^{-1}$, allow max. 3)

4
(a) work done bringing unit mass
from infinity (to the point)
(b) $E_{P}=-m \phi$
(c) $\phi \propto 1 / x$
either at $6 R$ from centre, potential is $\left(6.3 \times 10^{7}\right) / 6 \quad\left(=1.05 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}\right)$ and at $5 R$ from centre, potential is $\left(6.3 \times 10^{7}\right) / 5 \quad\left(=1.26 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}\right)$ change in energy $=(1.26-1.05) \times 10^{7} \times 1.3$

$$
=2.7 \times 10^{6} \mathrm{~J}
$$

or \quad change in potential $=(1 / 5-1 / 6) \times\left(6.3 \times 10^{7}\right)$
change in energy $=(1 / 5-1 / 6) \times\left(6.3 \times 10^{7}\right) \times 1.3$

$$
=2.7 \times 10^{6} \mathrm{~J}
$$

A1

B1 C1

A

C1
C1

M1
A1

B1
(a gravitational force provides/is the centripetal force
$G M m / r^{2}=m v^{2} / r$
$v=\sqrt{ }(G M / r)$
allow gravitational field strength provides/is the centripetal acceleration
$G M / r^{2}=v^{2} / r$
(b) (i) kinetic energy increase/change $=$ loss/change in (gravitational) potential energy
$1 / 2 m V_{0}{ }^{2}=G M m / x$
$V_{0}{ }^{2}=2 G M / x$
$V_{0}=\sqrt{ }(2 G M / x)$
(max. 2 for use of r not x)
(ii) V_{0} is (always) greater than v (for $x=r$)
so stone could not enter into orbit
(expressions in (a) and (b)(i) must be dimensionally correct)

6 (a work done in moving unit mass
M1
from infinity (to the point)
A1
(b) (gravitational potential energy $=G M m / x$
energy $=\left(6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 4.5\right) /\left(1.74 \times 10^{6}\right) \quad \mathrm{M}$
energy $=1.27 \times 10^{7} \mathrm{~J} \quad$ A0
(ii) $\frac{\text { change in grav. potential energy }=\text { change in kinetic energy }}{1 / 2 \times 4.5 \times v^{2}}$
$1 / 2 \times 4.5 \times v^{2}=1.27 \times 10^{7}$
$v=2.4 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
A1
(c) Earth would attract the rock / potential at Earth('s surface) not zero / <0 / at Earth, potential due to Moon not zero M1 escape speed would be lower A1

7 (a force proportional to product of the two masses and inversely proportional to the
square of their separation either reference to point masses or separation >> 'size' of masses
(b) gravitational force provides the centripetal force
$G M m / R^{2}=m R \omega^{2}$ B1
where m is the mass of the planet M1
$G M=R^{3} \omega^{2}$ A1
A0
(c) $\omega=2 \pi / T$

C1
either $M_{\text {star }} / M_{\text {sun }}=\left(R_{\text {star }} / R_{\text {Sun }}\right)^{3} \times\left(T_{\text {sun }} / T_{\text {star }}\right)^{2}$

$$
M_{\text {star }}=4^{3} \times(1 / 2)^{2} \times 2.0 \times 10^{30}
$$

C1
A1
or $\quad M_{\text {star }}=(2 \pi)^{2} R_{\text {star }}{ }^{3} / G T^{2}$

$$
\begin{align*}
& =\left\{(2 \pi)^{2} \times\left(6.0 \times 10^{11}\right)^{3}\right\} /\left\{6.67 \times 10^{-11} \times(2 \times 365 \times 24 \times 3600)^{2}\right\} \tag{C1}\\
& =3.2 \times 10^{31} \mathrm{~kg} \tag{C1}
\end{align*}
$$

