Gravitational Fields Mark Scheme 1

Level		Internat	ional A Level		
Subject		Physics			
Exam Board		CIE			
Торіс		Gravitat	ional Fields		
Sub Topic					
Paper Type		Theory			
Booklet		Mark Sc	heme 1		
Time Allowed:	66 minu	tes			
Score:	/55				
Percentage:	/100				
A* A	В	С	D	E	U
>85% '77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	 (a) (gravitational) force proportional to product of masses and inversely proportional to square of separation reference to <i>either</i> point masses <i>or</i> particles <i>or</i> 'size' much less than separation 			
	(b) gravitational force provides/is the centripetal force $GM_Nm/r^2 = mr\omega^2$ (or mv^2/r) $2\pi/T$ (or $v = 2\pi r/T$) leading to $GM_N = 4\pi^2 r^3/T^2$				[3]
	(c)	$M_{\rm N}/M_{\rm U}$ = (3.55/5.83 x^3 factor correct T^2 factor correct ratio = 1.18 (<i>allow 1</i> .	$(13.5/5.9)^2$	C1 C1 A1	
		alternative method:	mass of Neptune = 1.019×10^{20} kg mass of Uranus = 8.621×10^{25} kg ratio = 1.18	(C1) (C1) (A1)	[3]
	2 (a) (1. F = Gm₁m = (6.67 = 24.6 N	$M_2/x^2 \times 10^{-11} \times 2.50 \times 5.98 \times 10^{24})/(6.37 \times 10^6)^2$ I (accept 2 s.f. or more)	M1 A	[2]
		2. $F = mx\omega^2$ = 2.50 × = 0.0842	or $F = mv^2/x$ and $v = \omega x$ (accept x or r for distance) $6.37 \times 10^6 \times (2\pi/24 \times 3600)^2$ 2N (accept 2 s.f. or more)	C1 A	[2]
		(ii) reading = 24. = 24.	575 – 0.0842 5N (accept only 3 s.f.)	B1 A	[2]
	(b) gravitational force gravitational force (accept Gm ₁ m ₂ /x ²	provides the centripetal force is 'equal' to the centripetal force $F = mx\omega^2$ or $F_C = F_G$)	M1 M	
		'weight'/sensation and <i>F</i> _C which is ze	of weight/contact force/reaction force is difference between $F_{\rm G}$ ero	A1	[3]

3	(a)	g = GI = (6.	$\frac{M}{R^2}.67 \times 10^{-11} \times 6.4 \times 10^{23}) / (3.4 \times 10^6)^2 = 3.7 \mathrm{N kg^{-1}}$	C1 A1	[2]
	(b)	$\Delta E_{\rm P} = r$ becaus $\Delta E_{\rm P} = 2$ = 1 (use of	$mg\Delta h$ le $\Delta h \ll R$ (or 1800 m ≪ 3.4 × 10 ⁶ m) g is constant 2.4 × 3.7 × 1800 l.6 × 10 ⁴ J $g = 9.8 m s^{-2} max.$ 1 for explanation)	B1 C1 A	[3]
	(c)	gravitat $v^2 = 2G$ x = 4D $v^2 = (2)$	tional potential <u>energy</u> = (-) GMm/x GM/x = 4 × 6.8 × 10 ⁶ × 6.67 × 10 ⁻¹¹ × 6.4 × 10 ²³)/(4 × 6.8 × 10 ⁶)	C1 C1 C1	
		v = 3.7 v = 1.8 (use of	14×10^{6} $3 \times 10^{3} \text{ m s}^{-1}$ $3.5D \text{ giving } 1.9 \times 10^{3} \text{ m s}^{-1}$, allow max. 3)	A1	[4]
4	(a)	work d from ir	one bringing unit mass finity (to the point)	M1 A1	[2]
	(b)	E _P = -,	mφ	B1	[1
	(c)	$\phi \propto 1/x$	< Comparison of the second secon	C1	
		either	at 6 <i>R</i> from centre, potential is $(6.3 \times 10^7)/6$ (= $1.05 \times 10^7 \text{ J kg}^{-1}$) <u>and</u> at 5 <i>R</i> from centre, potential is $(6.3 \times 10^7)/5$ (= $1.26 \times 10^7 \text{ J kg}^{-1}$) change in energy = $(1.26 - 1.05) \times 10^7 \times 1.3$ = $2.7 \times 10^6 \text{ J}$	C1 C1 A1	
		or	change in potential = $(1/5 - 1/6) \times (6.3 \times 10^7)$ change in energy = $(1/5 - 1/6) \times (6.3 \times 10^7) \times 1.3$ = 2.7×10^6 J	(C1) (C1) (A1)	[4]

5	(a	gra <i>GM</i> v =	vitational force provides/is the centripetal force $Mm/r^2 = mv^2/r$ $= \sqrt{(GM/r)}$	B1 M1 A	[2]
		allo GM	by gravitational field strength provides/is the centripetal acceleration $1/r^2 = v^2/r$	(B1) (M1)	
	(b)	(i)	kinetic energy increase/change = loss/change in (gravitational) energy $\frac{1}{2}mV_0^2 = GMm/x$	potential B1 C1	
			$V_0 = 2GM/x$ $V_0 = \sqrt{2GM/x}$	А	[3]
			(max. 2 for use of r not x)		
		(ii)	V_0 is (always) greater than v (for $x = r$) so stone could not enter into orbit	M A1	[2]
			(expressions in (a) and (b)(i) must be dimensionally correct)		
6	(a	woi fror	rk done in moving unit mass m infinity (to the point)	M1 A1	[2]
	(b)	(gravitational potential energy = GMm / x energy = (6.67 × 10 ⁻¹¹ × 7.35 × 10 ²² × 4.5) / (1.74 × 10 ⁶) energy = 1.27 × 10 ⁷ J	M A0	[1]
		(ii)	<u>change in</u> grav. potential energy = <u>change in</u> kinetic energy	B1	
			$v_2 \times 4.5 \times v^2 = 1.27 \times 10^{7}$ $v = 2.4 \times 10^3 \text{ m s}^{-1}$	A1	[2]
	(c)	Ear / at esc	rth would attract the rock / potential at Earth('s surface) not zero / <0 Earth, potential due to Moon not zero cape speed would be lower	M1 A1	[2]

7	(a	force proportional to product of the two masses and inversely proportional to the square of their separation <i>either</i> reference to point masses <i>or</i> separation >> 'size' of masses	M1 A1	[2]
	(b)	gravitational force provides the centripetal force $GMm/R^2 = mR\omega^2$ where <i>m</i> is the mass of the planet $GM = R^3\omega^2$	B1 M1 A1 A0	[3]
	(c)	$\begin{split} \omega &= 2\pi / T \\ either \ M_{star} / M_{Sun} &= (R_{star} / R_{Sun})^3 \times (T_{Sun} / T_{star})^2 \\ M_{star} &= 4^3 \times (1/_2)^2 \times 2.0 \times 10^{30} \\ &= 3.2 \times 10^{31} \text{ kg} \\ or \ M_{star} &= (2\pi)^2 R_{star}^{-3} / GT^2 \\ &= \{(2\pi)^2 \times (6.0 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (2 \times 365 \times 24 \times 3600)^2\} \\ &= 3.2 \times 10^{31} \text{ kg} \end{split}$	C1 C1 (C1) (C1) (A1)	[3]

