Gravitational Fields Mark Scheme 2

Level		Internationa	I A Level		
Subject		Physics			
Exam Board		CIE			
Торіс		Gravitationa	l Fields		
Sub Topic					
Paper Type		Theory			
Booklet		Mark Schem	e 2		
Time Allowed:	78 minutes				
Score:	/65				
Percentage:	/100				
A* A	В	c	D	E	U
	- 1 U		UIN	_	-

1	(a	region of space area / volume where a mass experiences a force				
	(b)	(i)	force proportional to product of two masses force inversely proportional to the square of their separation <i>either</i> reference to point masses <i>or</i> separation >> 'size' of masses	M1 M1 A1	[3]	
		(ii)	field strength = GM / x^2 or field strength $\propto 1 / x^2$ ratio = $(7.78 \times 10^8)^2 / (1.5 \times 10^8)^2$ = 27	C1 C1 A1	[3]	
	(c)	(either centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$ or centripetal force = mv^2 / R and $v = 2\pi R / T$ gravitational force provides the centripetal force either $GMm / R^2 = mR\omega^2$ or $GMm / R^2 = mv^2 / R$ $M = 4\pi^2 R^3 / GT^2$ (allow working to be given in terms of acceleration)	B1 B1 M1 A0	[3]	
		(ii)	$M = \{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\} = 2.0 \times 10^{30} \text{ kg}$	С	[2]	

<u>CHEMISTRYONLINE</u> — TUITION —

2	(a	equ sate peri <i>(allo</i>	ator ellite od is ow 1	ial orbit / above equator moves from west to east / same direction as Earth spins s 24 hours / same period as spinning of Earth mark for 'appears to be stationary/overhead' if none of above marks scored	B1 B1 B1	[3]
	(b)	gra\ GM ω= clea	/itati <i>m/R</i> 2π / ar wo	ional force provides/is the centripetal force $\mu^2 = mR\omega^2$ or $GMm/R^2 = mv^2/R$ /T or $v = 2\pi R / T$ or clear substitution prking to give $R^3 = (GMT^2 / 4\pi^2)$	B1 M1 M1 A	[4]
	(c)	R ³ = = R = (mis	= 6.6 = 7.5 4.2 ssing	$57 \times 10^{-11} \times 6.0 \times 10^{24} \times (24 \times 3600)^2 / 4\pi^2$ $57 \times 10^{22} \times 10^7$ m and scores 2/3 marks)	C1 C1 A1	[3]
		form	a ia			
3	(a	inve eith	erse erse er p	ly proportional to the square of the separation oint masses <i>or</i> separation >> size of masses	M1 A1	[2]
	(b)	(i)	gra <i>mv</i> her	vitational force provides the centripetal force $r^{2}/r = GMm/r^{2}$ and $E_{K} = \frac{1}{2}mv^{2}$ ince $E_{K} = GMm/2r$	B1 M1 A0	[2]
		(ii)		$\Delta E_{\rm K} = \frac{1}{2} \times 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 9.26 × 10 ⁷ J (ignore any sign in answer) (allow 1.0 × 10 ⁸ J if evidence that $E_{\rm K}$ evaluated separately for each r)	C A	[2]
			2.	$\Delta E_{\rm P} = 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 1.85 × 10 ⁸ J (<i>ignore any sign in answer</i>) (allow 1.8 or 1.9 × 10 ⁸ J)	C A	[2]
		(iii)	<i>eith</i> spe	her $(7.30 \times 10^6)^{-1} - (7.34 \times 10^6)^{-1}$ or ΔE_K is positive / E_K increased and has increased	A1	[2]

4	(a	work do	B1	[1]	
	(b)	gravitat	ional <u>force</u> is (always) attractive	B1	
		or	work is done by masses as they come together	B1	[2]
	(c)	either or	force on mass = mg (where g is the acceleration of free fall /gravitational field strength) $g = GM/r^2$ if $r \otimes h$, g is constant ΔE_P = force × distance moved = mgh ΔE_P = $m\Delta\phi$ = $GMm(1/r_1 - 1/r_2) = GMm(r_2 - r_1)/r_1r_2$ if $r_2 \approx r_1$, then $(r_2 - r_1) = h$ and $r_1r_2 = r^2$ $g = GM/r^2$ ΔE_P = mgh	B1 B1 M1 A0 (C1) (B1) (B1) (A0)	[4]
	(d)	½mv² =	$= m\Delta\phi$		

d)	$V_2 m V^2 = m \Delta \phi$	
	$v^2 = 2 \times GM/r$	C1
	$= (2 \times 4.3 \times 10^{13}) / (3.4 \times 10^{6})$	C1
	$v = 5.0 \times 10^3 \text{ms}^{-1}$	A1
	(Use of diameter instead of radius to give $v = 3.6 \times 10^3 m s^{-1}$ scores 2 marks)	

<u>CHEMISTRY ONLINE</u> — TUITION — [3]

5	(a)	fore squ <i>eitl</i>	ce proportional to product of masses and inversely <u>proportional to</u> uare of separation (<i>do not allow square of distance/radius</i>) ner point masses <i>or</i> separation ⓐ size of masses	M A1		[2]
	(b)	($\omega = 2\pi / (27.3 \times 24 \times 3600)$ or $2\pi / (2.36 \times 10^6)$ = 2.66 × 10 ⁻⁶ rad s ⁻¹	M1 A0		[1]
		(ii)	$GM = r^{3}\omega^{2} \text{ or } GM = v^{2}r$ $M = (3.84 \times 10^{5} \times 10^{3})^{3} \times (2.66 \times 10^{-6})^{2} / (6.67 \times 10^{-11})$ $= 6.0 \times 10^{24} \text{ kg}$ (special case: uses $g = GM/r^{2}$ with $g = 9.81$, $r = 6.4 \times 10^{6}$ scores max 1	C1 M1 A0 mark)		[2]
	(c)	(grav. force = $(6.0 \times 10^{24}) \times (7.4 \times 10^{22}) \times (6.67 \times 10^{-11})/(3.84 \times 10^{8})^{2}$ = 2.0 × 10 ²⁰ N (<i>allow 1 SF</i>)	C1 A1		[2]
		(ii)	either $\Delta E_{\rm P} = Fx$ because F constant as x ! radius of orbit $\Delta E_{\rm P} = 2.0 \times 10^{20} \times 4.0 \times 10^{-2}$ $= 8.0 \times 10^{18} \text{ J} (allow 1 SF)$	B1 C1 A1		[3]
			or $\Delta E_{\rm P} = GMm/r_1 - GMm/r_2$ Correct substitution $8.0 \times 10^{18} \text{J}$ $(\Delta E_{\rm P} = GMm/r_1 + GMm/r_2 \text{ is incorrect physics so 0/3})$	C1 B1 A1		
6	(a	(i)	weight = $GMm/r_1^2 = (6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(1/2 \times 6.79 \times 10^6)^2$ = 5.20 N		C1 C1 A1	[3]
		(ii)	potential energy = $-GMm/r$ = $-(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40)/(\frac{1}{2} \times 6.79 \times 10^{6})$ = $-1.77 \times 10^{7} \text{ J}$		C1 M1 A0	[2]
	(b)	eith or	er $\frac{1}{2}mv^2 = 1.77 \times 10^7$ $v^2 = (1.77 \times 10^7 \times 2)/1.40$ $v = 5.03 \times 10^3 \text{ m s}^{-1}$ $\frac{1}{2}mv^2 = GMm/r$ $v^2 = (2 \times 6.67 \times 10^{-11} \times 6.42 \times 10^{23})/(6.70 \times 10^6/2)$	(C1 C1 A1 (C1)	
			$v = (2 \times 0.67 \times 10^{-1} \times 0.42 \times 10^{-1})/(0.79 \times 1072)$ $v = 5.02 \times 10^{3} \text{ m s}^{-1}$	((A1)	[3]
	(c)	(i)	$\frac{1}{2} \times 2 \times 1.66 \times 10^{-27} \times (5.03 \times 10^3)^2 = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$		C1	
			<i>T</i> = 2030 K		A1	[2]
		(ii)	<i>either</i> because there is a range of speeds some molecules have a higher speed or some escape from point above planet surface so initial potential energy is higher	(M1 A1 M1) (A1)	[2]