Gravitational Fields Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Gravitational Fields
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 2

1 (a region of space area / volume

(b) (i) force proportional to product of two masses
force inversely proportional to the square of their separation M1
either reference to point masses or separation >> 'size' of masses

$$
\text { (ii) field strength }=G M / x^{2} \text { or field strength } \propto 1 / x^{2}
$$

ratio $=\left(7.78 \times 10^{8}\right)^{2} /\left(1.5 \times 10^{8}\right)^{2}$ C1 $=27$
(c) (either centripetal force $=m R \omega^{2}$ and $\omega=2 \pi / T$
or centripetal force $=m v^{2} / R$ and $v=2 \pi R / T$
B1
gravitational force provides the centripetal force
B1
either $G M m / R^{2}=m R \omega^{2}$ or $G M m / R^{2}=m v^{2} / R$ M1
$M=4 \pi^{2} R^{3} / G T^{2}$
A0
(allow working to be given in terms of acceleration)
(ii) $M=\left\{4 \pi^{2} \times\left(1.5 \times 10^{11}\right)^{3}\right\} /\left\{6.67 \times 10^{-11} \times\left(3.16 \times 10^{7}\right)^{2}\right\}$

C

$$
=2.0 \times 10^{30} \mathrm{~kg}
$$

2
(a equatorial orbit / above equator B1
satellite moves from west to east / same direction as Earth spins B1
period is 24 hours / same period as spinning of Earth B1(allow 1 mark for 'appears to be stationary/overhead' if none of above marks scored)
(b) gravitational force provides/is the centripetal forceB1
$G M m / R^{2}=m R \omega^{2}$ or $G M m / R^{2}=m v^{2} / R$ M1
$\omega=2 \pi / T$ or $v=2 \pi R / T$ or clear substitution M1clear working to give $R^{3}=\left(G M T^{2} / 4 \pi^{2}\right) \quad \mathrm{A}$
(c) $R^{3}=6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times(24 \times 3600)^{2} / 4 \pi^{2}$ C1
$=7.57 \times 10^{22}$C1
$R=4.2 \times 10^{7} \mathrm{~m}$A1
(missing out 3600 gives $1.8 \times 10^{5} \mathrm{~m}$ and scores $2 / 3$ marks)A [4]

3 (a force is proportional to the product of the masses and inversely proportional to the square of the separationM1 either point masses or separation >> size of masses
(b) (i) gravitational force provides the centripetal force B1 $m v^{2} / r=G M m / r^{2}$ and $E_{K}=1 / 2 m v^{2}$M1
hence $E_{K}=G M m / 2 r$ A0
(ii) $\quad \Delta E_{K}=1 / 2 \times 4.00 \times 10^{14} \times 620 \times\left(\left\{7.30 \times 10^{6}\right\}^{-1}-\left\{7.34 \times 10^{6}\right\}^{-1}\right)$ $=9.26 \times 10^{7} \mathrm{~J}$ (ignore any sign in answer)
(allow $1.0 \times 10^{8} \mathrm{~J}$ if evidence that E_{K} evaluated separately for each r)
2. $\Delta E_{P}=4.00 \times 10^{14} \times 620 \times\left(\left\{7.30 \times 10^{6}\right\}^{-1}-\left\{7.34 \times 10^{6}\right\}^{-1}\right)$

$$
=1.85 \times 10^{8} \mathrm{~J} \text { (ignore any sign in answer) }
$$

(allow 1.8 or $1.9 \times 10^{8} \mathrm{~J}$)
(iii) either $\left(7.30 \times 10^{6}\right)^{-1}-\left(7.34 \times 10^{6}\right)^{-1}$ or ΔE_{K} is positive $/ E_{K}$ increased speed has increased
(b) gravitational force is (always) attractive
either as $r \overline{\text { decreases, object/mass/body does work }}$ or work is done by masses as they come together B1
(c) either force on mass $=m g$ (where g is the acceleration of free fall

$g=G M / r^{2}$	/gravitational field strength)
	B1
B1	

if r @ h, g is constant B1
$\Delta E_{P}=$ force \times distance moved M1
$=m g h \quad$ A0
or $\quad \Delta E_{\mathrm{p}}=m \Delta \phi$
$=\operatorname{GMm}\left(1 / r_{1}-1 / r_{2}\right)=\operatorname{GMm}\left(r_{2}-r_{1}\right) / r_{1} r_{2}$
if $r_{2} \approx r_{1}$, then $\left(r_{2}-r_{1}\right)=h$ and $r_{1} r_{2}=r^{2}$
$g=G M / r^{2}$
$\Delta E_{\mathrm{P}}=m g h$
(A0)
(d) $1 / 2 m v^{2}=m \Delta \phi$
$v^{2}=2 \times G M / r$
C1
$\begin{array}{ll}=\left(2 \times 4.3 \times 10^{13}\right) /\left(3.4 \times 10^{6}\right) & \mathrm{C} 1\end{array}$
$v=5.0 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1} \quad$ A1
(Use of diameter instead of radius to give $v=3.6 \times 10^{3} \mathrm{~ms}^{-1}$ scores 2 marks)

5 (a) force proportional to product of masses and inversely proportional to square of separation (do not allow square of distance/radius)
(b) $\left(\omega=2 \pi /(27.3 \times 24 \times 3600)\right.$ or $2 \pi /\left(2.36 \times 10^{6}\right)$

$$
=2.66 \times 10^{-6} \mathrm{rad} \mathrm{~s}^{-1} \quad \mathrm{AO}
$$

(ii) $G M=r^{3} \omega^{2}$ or $G M=v^{2} r$

C1
$M=\left(3.84 \times 10^{5} \times 10^{3}\right)^{3} \times\left(2.66 \times 10^{-6}\right)^{2} /\left(6.67 \times 10^{-11}\right) \quad$ M1

$$
\begin{equation*}
=6.0 \times 10^{24} \mathrm{~kg} \tag{A0}
\end{equation*}
$$

(special case: uses $g=G M / r^{2}$ with $g=9.81, r=6.4 \times 10^{6}$ scores max 1 mark)
(c) $\left(\right.$ grav. force $=\left(6.0 \times 10^{24}\right) \times\left(7.4 \times 10^{22}\right) \times\left(6.67 \times 10^{-11}\right) /\left(3.84 \times 10^{8}\right)^{2}$

$$
=2.0 \times 10^{20} \mathrm{~N} \text { (allow } 1 \mathrm{SF} \text {) }
$$

A1
(ii) either
$\Delta E_{\mathrm{P}}=F X$ because F constant as $x!$ radius of orbit
B1
$\Delta E_{P}=2.0 \times 10^{20} \times 4.0 \times 10^{-2}$
C1
$=8.0 \times 10^{18} \mathrm{~J}$ (allow 1 SF)
A1
or $\quad \Delta E_{\mathrm{P}}=G M m / r_{1}-G M m / r_{2}$
C1
Correct substitution B1
$8.0 \times 10^{18} \mathrm{~J}$
A1
$\left(\Delta E_{\mathrm{P}}=G M m / r_{1}+G M m / r_{2}\right.$ is incorrect physics so $\left.0 / 3\right)$
(a

$$
\text { (i) } \begin{aligned}
\text { weight } & =\left(6.64 m / r^{2} 10^{-11} \times 6.42 \times 10^{23} \times 1.40\right) /\left(1 / 2 \times 6.79 \times 10^{6}\right)^{2} \\
& =5.20 \mathrm{~N}
\end{aligned}
$$

(ii) potential energy $=-G M m / r$

$$
\begin{aligned}
& =-\left(6.67 \times 10^{-11} \times 6.42 \times 10^{23} \times 1.40\right) /\left(1 / 2 \times 6.79 \times 10^{6}\right) \\
& =-1.77 \times 10^{7} \mathrm{~J}
\end{aligned}
$$

(b) either $1 / 2 m v^{2}=1.77 \times 10^{7}$
$v^{2}=\left(1.77 \times 10^{7} \times 2\right) / 1.40$
or $\quad 1 / 2 m v^{2}=G M m / r$
$v^{2}=\left(2 \times 6.67 \times 10^{-11} \times 6.42 \times 10^{23}\right) /\left(6.79 \times 10^{6} / 2\right)$
$v=5.02 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
(c) (i) $1 / 2 \times 2 \times 1.66 \times 10^{-27} \times\left(5.03 \times 10^{3}\right)^{2}=\frac{3}{2} \times 1.38 \times 10^{-23} \times T$

$$
T=2030 \mathrm{~K}
$$

(ii) either because there is a range of speeds
some molecules have a higher speed
or some escape from point above planet surface

