Gravitational Fields

Mark Scheme 3

Lavel	International Adams					
Level	International A Level					
Subject	Physics					
Exam Board	CIE					
Topic	Gravitational Fields					
Sub Topic						
Paper Type	Theory					
Booklet	Mark Scheme 3					

Time Allowed: 69 minutes

Score: /57

Percentage: /100

CHEMISTRY ONLINE

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- 1 (a (i) force proportional to product of masses force inversely proportional to square of separation B1 [2]
 - (ii) separation <u>much</u> greater than radius / diameter of Sun / planet B1 [1]
 - (b) (i) e.g. force or field strength $\propto 1/r^2$ potential $\propto 1/r$ B1 [1]
 - (ii) e.g. gravitational force (always) attractive B1 electric force attractive or repulsive B1 [2]

- 2 (a force per unit mass (ratio idea essential) B [1]
 - (b) graph: correct curvature M1 from $(R, 1.0 g_s)$ & at least one other correct point A1 [2]
 - (c) (i) fields of Earth and Moon are in opposite directions

 either resultant field found by subtraction of the field strength

 or any other sensible comment A1

 so there is a point where it is zero

 (allow $F_E = -F_M$ for 2 marks)
 - (ii) $GM_E/x^2 = GM_M/(D-x)^2$ C1 $(6.0 \times 10^{24})/(7.4 \times 10^{22}) = x^2/(60R_E - x)^2$ C1 $x = 54R_E$ A1 [3]
 - (iii) graph: g = 0 at least $\frac{2}{3}$ distance to Moon B1 $g_{\rm E}$ and $g_{\rm M}$ in opposite directions M1
 correct curvature (by eye) and $g_{\rm E} > g_{\rm M}$ at surface A1 [3]

(a) work done moving unit mass M1 3 from infinity to the point **A1** [2] **(b) (i)** at R, $\phi = 6.3 \times 10^7 \,\text{J kg}^{-1}$ (allow $\pm 0.1 \times 10^7$) В $\phi = GM/R$ $6.3 \times 10^7 = (6.67 \times 10^{-11} \times M) / (6.4 \times 10^6)$ C $M = 6.0 \times 10^{24} \text{ kg (allow } 5.95 \rightarrow 6.14)$ **A1** [3] Maximum of 2/3 for any value chosen for ϕ not at R(ii) change in potential = 2.1×10^7 J kg⁻¹ (allow $\pm 0.1 \times 10^7$) С loss in potential energy = gain in kinetic energy **B1** $\frac{1}{2} m v^2 = \phi m \text{ or } \frac{1}{2} m v^2 = GM / 3R$ C₁ $\frac{1}{2}v^2 = 2.1 \times 10^7$ $v = 6.5 \times 10^3 \,\mathrm{m \ s^{-1}}$ (allow $6.3 \to 6.6$) **A1** [4] (answer 7.9×10^3 m s⁻¹, based on x = 2R, allow max 3 marks) (iii) e.g. speed / velocity / acceleration would be greater **B1** deviates / bends from straight path **B1** [2] (any sensible ideas, 1 each, max 2) either M and m are point masses [2 period 24 hours / same angular speedB1 [3] (allow one of the last two marks for 'always overhead' if 2nd or 3rd marks not scored) (ii) gravitational force provides centripetal force $GM/x^2 = x\omega^2 \qquadM1$ $g = GM/R^2$ M1 [3] $x^3 = 7.6 \times 10^{22}$ [3] (use of $g = 10 \text{ m s}^{-2}$, loses 1 mark but once only in the Paper)

[Total: 10]

- 6 (a) force per unit mass (ratio idea essential) B1 [1]
 - (b) $g = GM/R^2$ C1 $8.6 \times (0.6 \times 10^7)^2 = M \times 6.67 \times 10^{-11}$ C1 $M = 4.6 \times 10^{24} \text{ kg}$ [3]
 - (c) (i) either potential decreases as distance from planet decreases or potential zero at infinity and X is closer to zero or potential α –1/r and Y more negative M1 so point Y is closer to planet. A1 [2]
 - (ii) idea of $\Delta \phi = \frac{1}{2}v^2$ C1 $(6.8 - 5.3) \times 10^7 = \frac{1}{2}v^2$ $v = 5.5 \times 10^3 \,\text{ms}^{-1}$ A1 [2]