Deformation of Solids

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Deformation of Solids
Sub Topic	
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 59 minutes

Score: /49

Percentage: /100

A*	A	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 A spring is kept horizontal by attaching it to points A and B, as shown in Fig. 4.1.

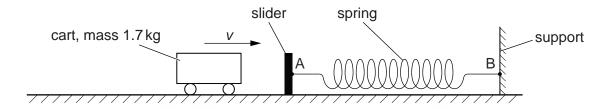


Fig. 4.1

Point A is on a movable slider and point B is on a fixed support. A cart of mass 1.7 kg has horizontal velocity v towards the slider. The cart collides with the slider. The spring is compressed as the cart comes to rest. The variation of compression x of the spring with force F exerted on the spring is shown in Fig. 4.2.

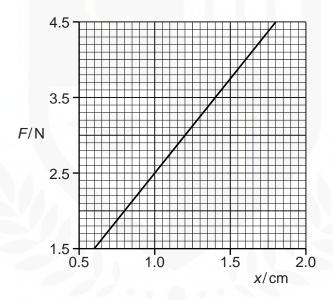


Fig. 4.2

Fig. 4.2 shows the compression of the spring for $F = 1.5\,\mathrm{N}$ to $F = 4.5\,\mathrm{N}$. The cart comes to rest when F is 4.5 N.

- (a) Use Fig. 4.2 to
 - (i) show that the compression of the spring obeys Hooke's law,

••••••	 	

(ii)	determine the spring constant of the spring,
	spring constant = Nm ⁻¹ [2]
(:::\	
(iii)	determine the elastic potential energy $E_{\rm P}$ stored in the spring due to the cart being brought to rest.
	E _P = J [3]
	Iculate the speed ν of the cart as it makes contact with the slider. Assume that all the etic energy of the cart is converted to the elastic potential energy of the spring.
	speed = ms ⁻¹ [2]

2 Fig. 4.1 shows the values obtained in an experiment to determine the Young modulus *E* of a metal in the form of a wire.

quantity	value	instrument
diameter d	0.48 mm	
length l	1.768 m	
load F	5.0 N to 30.0 N in 5.0 N steps	
extension e	0.25 mm to 1.50 mm	

Fig. 4.1

(a)	(i)	Complete Fig. 4.1 with the name of an instrument that could be used to measure each of the quantities. [3]
	(ii)	Explain why a series of values of F, each with corresponding extension e, are measured.
		[1]
(b)		lain how a series of readings of the quantities given in Fig. 4.1 is used to determine the $\log m$ modulus of the metal. A numerical answer for E is not required.
	•••••	
		rol

	(i)	a solid,	
		[2]
	(ii)	a gas.	
		[1]
(b)	(i)	A ductile material in the form of a wire is stretched up to its breaking point. On Fig. 4. sketch the variation with extension <i>x</i> of the stretching force <i>F</i> .	1,
		↑	
		ductile material	
		F ductile material	
		$0 \bigcup_{0} x$	
		Fig. 4.1	1]
	(ii)	On Fig. 4.2, sketch the variation with extension x of the stretching force F for a britt material up to its breaking point.	
		↑	
		F brittle material	
		Fig. 4.2	1]
(c)	Des	scribe a similarity and a difference between ductile and brittle materials.	
	sim	ilarity:	
		, , , , , , , , , , , , , , , , , , ,	
	diffe	erence:	

4	(a)	Define the Young modulus.
		[1]

(b) Two wires P and Q of the same material and same original length l_0 are fixed so that they hang vertically, as shown in Fig. 5.1.

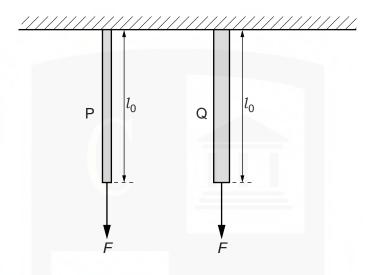


Fig. 5.1 (not to scale)

The diameter of P is d and the diameter of Q is 2d. The same force F is applied to the lower end of each wire.

Show your working and determine the ratio

(i)
$$\frac{\text{stress in P}}{\text{stress in Q}}$$
,

(ii)
$$\frac{\text{strain in P}}{\text{strain in Q}}$$

5 A spring hangs vertically from a point P, as shown in Fig. 4.1.

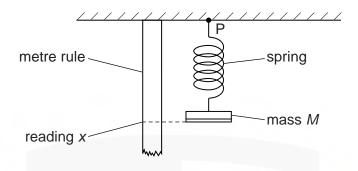


Fig. 4.1

A mass M is attached to the lower end of the spring. The reading x from the metre rule is taken, as shown in Fig. 4.1. Fig. 4.2 shows the relationship between x and M.

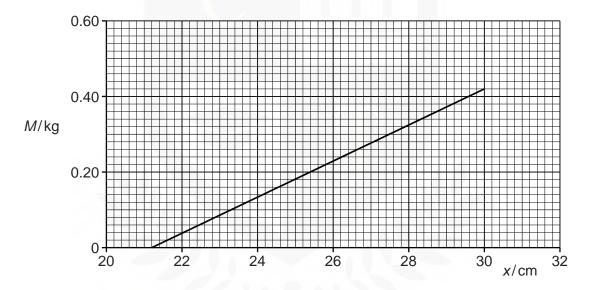


Fig. 4.2

(a)	elastic limit.
	[2]
(b)	State and explain whether Fig. 4.2 suggests that the spring obeys Hooke's law.

(c) Use Fig. 4.2 to determine the spring constant, in $N m^{-1}$, of the spring.

spring constant = N m⁻¹ [3]

6	Ene	rgy is stored in a metal wire that is extended elastically.	
	(a)	Explain what is meant by extended elastically.	
	(b)	Show that the SI units of energy per unit volume are kg m ⁻¹ s ⁻² .	
			.
			[2]
	(c)	For a wire extended elastically, the elastic energy per unit volume X is given by	
		$X = C\varepsilon^2 E$	
		where C is a constant, ε is the strain of the wire,	
		and E is the Young modulus of the wire.	
		Show that <i>C</i> has no units.	

(a)	Def	ne
	(i)	stress,
		[1]
	(ii)	strain.
		[1]
(b)	The wire	Young modulus of the metal of a wire is $0.17\mathrm{TPa}$. The cross-sectional area of the is $0.18\mathrm{mm}^2$.
	The 0.09	wire is extended by a force F . This causes the length of the wire to be increased by 5%.
	Cal	ulate
	(i)	the stress,
		stress = Pa [4]
	(ii)	the force F.
		F = N [2]

7