Deformation of Solids Mark Scheme 1

Level	Interna	ational A Level		
Subject	Physics	5		
Exam Board	CIE			
Торіс	Deform	nation of Solids		
Sub Topic				
Paper Type	Theory	,		
Booklet	Mark S	cheme 1		
	EQ minutos			
Time Allowed:	55 minutes			
Score:	/49			
Percentage:	/100			
Δ* Δ	P C	D	F	
		D	L	U

1	(a	(i)	two sets of co-ordinates taken to determine a constant value (F/x)			
			<i>F</i> / <i>x</i> constant hence obeys Hooke's law			[2]
			<i>or</i> gradient calculated and one point on line used to show no intercept hence obeys Hooke's law			
		(ii)) gradient or one point on line used e.g. 4.5/1.8 \times 10^{-2}			
			$(k =) 250 \mathrm{N}\mathrm{m}^{-1}$		A1	[2]
	(iii)	work done or E_P = area under graph or $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$		C1	
				= $0.5 \times 4.5 \times 1.8 \times 10^{-2}$ or $0.5 \times 250 \times (1.8 \times 10^{-2})^2$	C1	
				= 0.041 (0.0405) J	A1	[3]
(b) KE = $\frac{1}{2}mv^2$						
	$\frac{1}{2}mv^2 = 0.0405 \text{ or KE} = 0.0405 \text{ (J)}$				C1	
		(v =	[2 × 0.0405/1.7]	$^{/2}$ =) 0.22 (0.218) m s ⁻¹	A1	[2]

2	(a	(i)	diameter and extension: micrometer (screw gauge) or digital calipers	B1	
			length: tape measure or metre rule	B1	
			load: spring balance or Newton meter	B1	[3]
		(ii)	to reduce the effect of random errors or to plot a graph to check for zero error in measurement of extension or to see if limit of proportionality is exceeded	B1	1]
	(b)	plo	t a graph of <i>F</i> against <i>e</i> and determine the gradient	B1	
		E	= (gradient $\times l$)/[$\pi d^2/4$]		[2]

3	(a	(i)	solid: (molecules) vibrate no translational motion/fixed position, liquid: translational motion	B1 B1	[2]
		(ii)	gas: molecules have random (and translational) motion	B1	[1]
	(b)	(i)	ductile: straight line through origin then curving towards <i>x</i> -axis	B1	[1]
		(ii)	brittle: straight line through origin with no or negligible curved region	B1	[1]
	(c)	sim	ilarity: obey Hooke's law / $F \propto x$ or have elastic regions	B1	
		diffe	erence: brittle no or (very) little plastic region ductile has (large(r)) plastic region	B1	[2]
4	(a	(Yo	ung modulus/ <i>E</i> =) stress/strain		[1]
	(b)	(i) (ii)	stress = F/A or = $F/(\pi d^2/4)$ or = $F/(\pi d^2)$ ratio = 4 (or 4:1) E is the same for both wires (as same material) [e.g. $E_P = E_Q$]	M1 A1 M1	[2]
			strain = stress/ <i>E</i> ratio = 4 (or 4:1) [<i>must be same as (i)</i>]	A	[2]
5	(a	<u>add</u> origi	<u>small mass</u> to cause extension then remove mass to see if spring returns to nal length	M1	
		repe rem	eat for larger masses and note maximum mass for which, when load is oved, the spring does return to original length	A1	[2]
	(b)	Hoo grap	ke's law requires force proportional to extension oh shows a straight line, hence obeys Hooke's law	B1 M1	[2]
	(c)	k = : = : = :	force / extension (0.42 × 9.81) / [(30 – 21.2) × 10 ⁻²] 47 (46.8) N m ⁻¹	C A1	[3]

(a	the whe	wire returns to its original length n the load is removed	(not 'shape')	M A1	[2]
(b)	enei enei enei	rgy: N m / kg m ² s ⁻² and volume m ³ rgy / volume: kg m ² s ⁻² / m ³ rgy / volume: kg m ⁻¹ s ⁻²		C1 M1 A0	[2]
(c)	ε ha E: kg	as no units g m s ⁻² m ⁻² s of PHS: kg m ⁻¹ s ⁻² = 1 HS units / satisi	factory conclusion to show C has	B1 M1	
	no u	inits		A1	[3
(a	(i)	stress = force / cross-sectional area		B1	[1]
	(ii)	strain = extension / <u>original</u> length		B1	[1]
(b)	(i)	$E = \text{stress / strain} E = 0.17 \times 10^{12} \text{stress } = 0.17 \times 10^{12} \times 0.095 / 100 = 1.6(2) \times 10^8 \text{Pa}$		C1 C1 C1 A1	[4]
	(ii)	force = (stress × area) = 1.615 × 10 ⁸ × = 29(.1)N	× 0.18 × 10 ⁻⁶	C1 A	[2]

<u>CHEMISTRY ONLINE</u> — TUITION —