Deformation of Solids
 Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Deformation of Solids
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	59 minutes				
Score:	/49				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a (i) two sets of co-ordinates taken to determine a constant value (F / x)
F/x constant hence obeys Hooke's law
or
gradient calculated and one point on line used
to show no intercept hence obeys Hooke's law
(ii) gradient or one point on line used e.g. 4.5/1.8 $\times 10^{-2}$

$$
(k=) 250 \mathrm{Nm}^{-1}
$$

(iii) work done or $E_{P}=$ area under graph or $1 / 2 F x$ or $1 / 2 k x^{2}$

$$
\begin{aligned}
& =0.5 \times 4.5 \times 1.8 \times 10^{-2} \text { or } 0.5 \times 250 \times\left(1.8 \times 10^{-2}\right)^{2} \\
& =0.041(0.0405) \mathrm{J}
\end{aligned}
$$

(b) $\mathrm{KE}=1 / 2 m v^{2}$

$$
\begin{array}{ll}
1 / 2 m v^{2}=0.0405 \text { or KE }=0.0405(\mathrm{~J}) & \mathrm{C} 1 \\
\left(v=[2 \times 0.0405 / 1.7]^{1 / 2}=\right) 0.22(0.218) \mathrm{ms}^{-1} & \mathrm{~A} 1
\end{array}
$$

2 (a (i) diameter and extension: micrometer (screw gauge) or digital calipers length: tape measure or metre rule
(ii) to reduce the effect of random errors or to plot a graph to check for zero error in measurement of extension or to see if limit of proportionality is exceeded
(b) plot a graph of F against e and determine the gradient

$$
E=(\text { gradient } \times l) /\left[\pi d^{2} / 4\right]
$$

(a (i) solid: (molecules) vibrate
B1
no translational motion/fixed position, liquid: translational motion B1
(ii) gas: molecules have random (and translational) motion
(b) (i) ductile: straight line through origin then curving towards x-axis B1
(ii) brittle: straight line through origin with no or negligible curved region B1
(c) similarity: obey Hooke's law / F $\propto x$ or have elastic regions
difference: brittle no or (very) little plastic region ductile has (large(r)) plastic region

B1

4 (a (Young modulus/ $E=$) stress/strain
(b) (i) stress $=F / A$
or $\quad=F /\left(\pi d^{2} / 4\right)$
or $\quad=F /\left(\pi d^{2}\right)$
M1
ratio $=4($ or $4: 1)$
A1
(ii) E is the same for both wires (as same material) [e.g. $E_{P}=E_{Q}$]
strain $=$ stress $/ E$
ratio $=4$ (or 4:1) [must be same as (i)]
A

5 (a add small mass to cause extension then remove mass to see if spring returns to original length
repeat for larger masses and note maximum mass for which, when load is removed, the spring does return to original length
(b) Hooke's law requires force proportional to extension M1 graph shows a straight line, hence obeys Hooke's law
(c) $k=$ force/extension

$$
\begin{aligned}
& =(0.42 \times 9.81) /\left[(30-21.2) \times 10^{-2}\right] \\
& =47(46.8) \mathrm{Nm}^{-1}
\end{aligned}
$$

(a the wire returns to its original length
when the load is removed \quad (not 'shape') M
(b) energy: $\mathrm{Nm} / \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ and volume m^{3}

C1
energy / volume: $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / \mathrm{m}^{3} \quad$ M1 energy / volume: $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$ A0
(c) ε has no units B1
$E: \mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~m}^{-2}$ M1
units of RHS: $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}=$ LHS units / satisfactory conclusion to show C has no units
(a (i) stress = force / cross-sectional area
(ii) strain $=$ extension $/$ original length
(b) (i) $E=$ stress / strain

C1
$E=0.17 \times 10^{12}$
C1
stress $=0.17 \times 10^{12} \times 0.095 / 100$
C1
$=1.6(2) \times 10^{8} \mathrm{~Pa}$
A1
A1
(ii) force $=($ stress \times area $)=1.615 \times 10^{8} \times 0.18 \times 10^{-6}$

$$
=29(.1) \mathrm{N}
$$

C1
A

