Deformation of Solids Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Deformation of Solids
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 2
Time Allowed: Score:	57 minutes
Score:	/47
Score:	/47

1 (a when the load is removed then the wire / body object does not return to its original shape / \$B1\$ [1]

(b) (i) stress = force / area $F = 220 \times 10^6 \times 1.54 \times 10^{-6} = 340 (338.8)$ N	C1 A	[2]
(ii) $E = (F \times l) / (A \times e)$ $e = (90 \times 10^{6}) \times 1.75 / (1.2 \times 10^{11}) = 1.31 \times 10^{-3} \text{ m}$	C A	[2]
(c) the stress is no longer proportional to the extension	B1	[1]
2 (a metal: regular / repeated / ordered arrangement / pattern / lat or long range order (of atoms / molecules / ions) polymer: tangled chains (of atoms / molecules) or long chains (of	B1	
atoms / molecules / ions)	B1	
amorphous: disordered / irregular arrangement or short range orde (of atoms / molecules / ions)	r B1	[3]
(b) metal: straight line or straight line then curving with less positive gradient polymer: curve with decreasing gradient with steep increasing gradient at end	B1 B1	
3 (a) extension is proportional to force / load	B1	[1]
(b) $F = mg$ $x = (mg / k) = 0.41 \times 9.81 / 25 = (4.02 / 25)$ $x = 0.16 \mathrm{m}$	C1 M1 A0	[2]
(c) (i) weight and (reaction) force from spring (which is equal to tension in spring)	B1	[1]
(ii) F – weight or 0.06 × 25 = ma	C1	
$F = 0.2209 \times 25 = 5.52 \text{ (N)} \text{ or } 0.22 \times 25 = 5.5$ $a = (5.52 - 0.41 \times 9.81) / 0.41 \text{ or } 1.5 / 0.41 \text{ and } (5.5 - 4.02)$ $a = 3.7 (3.66) \text{ m s}^{-2} \text{ gives } 3.6 \text{ m s}^{-2}$	C1 A1	[3]

	$a = (5.52 - 0.41 \times 9.81) / 0.41$ $a = 3.7 (3.66) \text{ m s}^{-2}$	or $1.5 / 0.41$ and $(5.5 - 4.02)$ gives 3.6 m s^{-2}	C1 A1	[3]
. ,	lastic potential energy / strain ene	rgy to kinetic energy and gravitational	B1	

potential energy		DI	
stretching / extension reduces	s and velocity increases / height increases	B1	[2]

4		esultant force (and resultant torque) is zero eight (down) = force from/due to spring (up)	B1 B1	[2]
	(b) (i)	0.2, 0.6, 1.0 s (one of these)	A1	[1]
	(ii)	0, 0.8s (one of these)	A1	[1]
	(iii)	0.2, 0.6, 1.0s (one of these)	A1	[1]
	(c) (Hooke's law: extension is proportional to the force (<i>not mass</i>) Linear/straight line graph hence obeys Hooke's law	B1 B1	[2]
	(ii)	Use of the gradient (<i>not just F</i> = kx) K = (0.4 × 9.8) / 15 × 10 ⁻² = 26(.1) N m ⁻¹	C1 M1 A0	[2]
	(iii)	<i>either</i> energy = area to left of line <i>or</i> energy = $\frac{1}{2}ke^2$ = $\frac{1}{2} \times [(0.4 \times 9.8) / 15 \times 10^{-2}] \times (15 \times 10^{-2})^2$ = 0.294 J (<i>allow 2 s.f.</i>)	C1 C1 A1	[3]
5	(a) E =	= stress / strain	B1	[1]
	(b) (i)	1. diameter / cross sectional area / radius 2. original length	B1	[1]
	(ii)	measure original length with a <u>metre</u> ruler / tape measure the <u>diameter</u> with micrometer (screw gauge) <i>allow digital vernier calipers</i>	B1 B1	[2]
	(iii)	energy = $\frac{1}{2}$ Fe or area under graph or $\frac{1}{2}$ kx ² = $\frac{1}{2} \times 0.25 \times 10^{-3} \times 3 = 3.8 \times 10^{-4}$ J	C1 A1	[2]
		aight line through origin below original line e through (0.25, 1.5)	M1 A1	[2]

(b)	(i) (ii)	point beyond which (the spring) does not return to its original length when the load is removed	81	[1]
	(ii)			1 1
		gradient of graph= 80Nm- ¹	A1	[1]
	(iii)	work done is area under graph/ $\frac{1}{2}$ Fx $\frac{1}{2}$ kx2 = 0.5 x 6.4 x 0.08 = 0.256 (allow 0.26) J	C1 A1	[2]
(c)	(i)	extension = $0.08 + 0.04 = 0.12$ m	A1	[1]
	(ii)	spring constant= 6.4 / $0.12 = 53.3$ Nm- ¹	A1	[1]
	(c)	(c) (i)	$= 0.5 \times 6.4 \times 0.08 = 0.256 \text{ (allow 0.26) J}$ (c) (i) extension = 0.08 + 0.04 = 0.12 m	$= 0.5 \times 6.4 \times 0.08 = 0.256 \text{ (allow 0.26) J}$ A1 (c) (i) extension = $0.08 + 0.04 = 0.12 \text{ m}$ A1