Deformation of Solids Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Deformation of Solids
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 3
Time Allowed:	64 minutes
Time Allowed: Score:	64 minutes /53
Time Allowed: Score: Percentage:	64 minutes /53 /100
Time Allowed: Score: Percentage: A* A	64 minutes /53 /100 B C D E U

(a) (i) stress = force / (cross-sectional) area	B1	[1]
(ii) strain = extension / <u>original</u> length or change in length / <u>original</u> length	B1	[1]
(b) <u>point</u> beyond which material does not return to the original length / shape / size when the load / force is removed		
(c) UTS is the maximum force / <u>original</u> cross-sectional area wire is able to support / before it breaks		[2]
allow one: maximum stress the wire is able to support / before it breaks		
(d) (i) straight line from (0,0) correct shape in plastic region	M1 A1	[2]
(ii) only a straight line from (0,0)	B1	[1
 (e) (i) ductile: initially force proportional to extension then a large extension for small change in force brittle: force proportional to extension until it breaks 	B1 B1	[2]
 (ii) 1. does not return to its original length / permanent extension (as entered plastic region) 	B1	
 returns to original length / no extension (as no plastic region / still in elastic region) 	B1	[2]

<u>CHEMISTRY ONLINE</u> — TUITION —

1

2	(a	(i)	power = work done per unit time / energy transferred per unit time / rate of done	work B1	[1
		(ii)	Young modulus = stress / strain	B1	[1]
	(b)	(i)	1. $E = T / (A \times \text{strain})$ (allow strain = ε) $T = E \times A \times \text{strain} = 2.4 \times 10^{11} \times 1.3 \times 10^{-4} \times 0.001$ $= 3.12 \times 10^{4} \text{ N}$	C1 M1 A0	[2]
			2. $T - W = ma$ [3.12 × 10 ⁴ - 1800 × 9.81] = 1800a $a = 7.52 \text{ ms}^{-2}$	C1 C1 A1	[3]
		(ii)	1. $T = 1800 \times 9.81 = 1.8 \times 10^4 \text{ N}$	A1	[1]
			2. potential energy gain = mgh	C1	
			$= 1800 \times 9.81 \times 13$ = 2.7 × 10 ⁵ J	A1	[2]
		(iii)	P = Fv = 1800 × 9.81 × 0.55 input power = 9712 × (100/30) = 32.4 × 10 ³ W	C1 C1 A1	[3]
3	(a	(i)	stress is force / area	B1	[1]
		(ii)	<i>strain</i> is extension / <u>original</u> length	B1	[1]
	(b)	(i)	$E = [F / A] \div [e / l]$ $e = (25 \times 1.7) / (5.74 \times 10^{-8} \times 1.6 \times 10^{11})$ $e = 4.6 \times 10^{-3} m$	C C A1	[3]
		(ii)	A becomes A/2 or stress is doubled $e \propto l/A$ or substitution into full formula total extension increase is 4 <i>e</i>	B1 B1 A1	[3]

asherrana@chemistryonlinetuition.com

4	(a	clamped horizontal wire over pulley or vertical wire attached to ceiling with mass attached	B1	
		details: reference mark on wire with fixed scale alongside	B1	[2]
	(b)	measure original length of wire to reference mark with metre ruler / tape measure diameter with micrometer / digital calipers	(B1) (B1)	
		scale measure / record mass or weight used for the extension		
		good physics method: measure diameter in several places / remove load and check wire returns to original length / take several readings with different loads	(B1)	
		MAX of 4 points	B4	[4]
	(c)	determine extension from final and initial readings plot a graph of force against extension determine gradient of graph for F / e calculate area from $\pi d^2 / 4$ calculate E from $E = F l / e A$ or gradient × l / A	(B1) (B1) (B1) (B1) (B1)	
		MAX of 4 points	B4	[4]

5	(a for	ce is proportional to extension		[1]
	(b)	gradient of graph determined (e.g. 50 / 40 $\times 10^{-3}$) = 1250 N m ⁻¹	A1	[1]
	(ii)	$W = \frac{1}{2} k x^{2} $ or $W = \frac{1}{2}$ final force × extension = 0.5 × 1250 × $(36 × 10^{-3})^{2}$ or 0.5 × 45 × 36 × 10 ⁻³ = 0.81 J	M1 M1 A0	[2]
	(c)	$0.81 = \frac{1}{2} mv^2$ v = 8.0 (8.0498) m s ⁻¹	C1 A1	[2]
	(ii)	4 × KE / 4 × WD or 3.24 J hence twice the compression = 72 mm	C1 A1	[2]
	(iii)	Max height is when all KE or WD or elastic PE is converted to GPE ratio = 1/4 or 0.25	C1 A1	[2]

<u>CHEMISTRYONLINE</u> — TUITION —