Deformation of Solids
 Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Deformation of Solids
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed:	57 minutes				
Score:	/47				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1
(a (i) F / A
B1 [1
B1 [1
(ii) $\Delta L / L$
(iii) allow $F L / A \Delta L$
(iv) allow $\rho L / A$ or $\rho(L+\Delta L) / A$

B1 [1]
(b) (i) $\Delta L=F L / E A$

$$
=(30 \times 2.6) /\left(7.0 \times 10^{10} \times 3.8 \times 10^{-7}\right)
$$

$$
=2.93 \times 10^{-3} \mathrm{~m}=2.93 \mathrm{~mm}
$$

A0

$$
\text { (ii) } \begin{aligned}
\Delta R & =\rho \Delta L / A \\
& =\left(2.6 \times 10^{-8} \times 2.93 \times 10^{-3}\right) /\left(3.8 \times 10^{-7}\right) \\
& =2.0 \times 10^{-4} \Omega
\end{aligned}
$$

(c) change in resistance is (very) small

M1
so method is not appropriate
A1
(a) energy $=$ average force \times extension

$$
=1 / 2 \times F \times x
$$

B1
(Hooke's law) extension proportional to (applied) force B1 hence $F=k x$ B1 so $E=1 / 2 k x^{2}$ A0
(b) (i) correct area shaded B1
(ii) $1.0 \mathrm{~cm}^{2}$ represents 1.0 mJ or correct units used in calculation C1 $E_{\mathrm{S}}=6.4 \pm 0.2 \mathrm{~mJ}$ (for answer $> \pm 0.2 \mathrm{~mJ}$ but $\leq \pm 0.4 \mathrm{~mJ}$, then allow $2 / 3$ marks)
(iii) arrangement of atoms / molecules is changed B1 [1]
crystalline: atoms / ions / particles in a regular arrangement / lattice long range order / orderly pattern (lattice) repeats itself
polymer: long chain molecules / chains of monomers
(b) kinetic energy increases from zero then decreases to zero

B1
(c) (i) $\Delta E_{\mathrm{P}}=m g \Delta h / m g h$

$$
\begin{aligned}
& =94 \times 10^{-3} \times 9.8 \times 2.6 \times 10^{-2} \quad \text { using } g=10 \text { then }-1 \\
& =0.024 \mathrm{~J}
\end{aligned}
$$

(ii) either $0.024=1 / 2 k \times\left(2.6 \times 10^{-2}\right)^{2}$ or $1 / 2 k d^{2}=1 / 2 k \times\left(2.6 \times 10^{-2}\right)^{2}-1 / 2 k d^{2} \quad$ C1

$$
\begin{align*}
0.012 & =1 / 2 k \times d^{2} \\
d & =0.018 \mathrm{~m} \\
& =1.8 \mathrm{~cm} \tag{A1}
\end{align*}
$$

A

$$
k d^{2}=1 / 2 k \times\left(2.6 \times 10^{-2}\right)^{2}
$$

$$
d=0.018 \mathrm{~m}
$$

$$
=1.8 \mathrm{~cm}
$$

5 (a either energy (stored)/work done represented by area under graph

$$
=3.6 \mathrm{~J}
$$

A1
(b) (i) either momentum before release is zero $\ldots \ldots \ldots$ M1
so sum of momenta (of trolleys) after release is zero A1
or \quad force $=$ rate of change of momentum (M1) force on trolleys equal and opposite (A1)
or impulse $=$ change in momentum (M1) impulse on each equal and opposite
(A1)

	force on trolleys equal and opposite	(A1)
or	impulse $=$ change in momentum	(M1)
	impulse on each equal and opposite	(A1)

(ii) $1 M_{1} V_{1}=M_{2} V_{2}$
$2 \underline{E}=1 / 2 M_{1} V_{1}^{2}+1 / 2 M_{2} V_{2}^{2}$
(iii) $E_{K}=1 / 2 m v^{2}$ and $p=m v$ combined to give $E_{\mathrm{K}}=p^{2} / 2 m$ A0
$2 m$ smaller, E_{K} is larger because p is the same/constant M1 so trolley B A0
 data chosen using point in linear region of graph M1 Young modulus $=\left(2.1 \times 10^{8}\right) /\left(1.9 \times 10^{-3}\right)$

(ii) This mark was removed from the assessment, owing to a power-of-ten inconsistency in the printed question paper.

