Deformation of Solids Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Deformation of Solids
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 4
Time Allowed:	57 minutes
Searcy	
Score:	/4/
Percentage:	/100
A* A	B C D E U
>85% '77.5%	70% 62.5% 57.5% 45% <45%

1	(a (i)	F/A	B1	[1
	(ii)	ΔΕ / Ε	B1	[1
	(iii)	allow $FL/A\Delta L$	B1	[1]
	(iv)	allow $\rho L / A$ or $\rho (L + \Delta L) / A$	B1	[1]
	(b) (i)	$\Delta L = FL / EA$ = (30 × 2.6) / (7.0 × 10 ¹⁰ × 3.8 × 10 ⁻⁷) = 2.93 × 10 ⁻³ m = 2.93 mm	M1 A0	[1]
	(ii)	$\Delta R = \rho \Delta L / A$ = (2.6 × 10 ⁻⁸ × 2.02 × 10 ⁻³) / (2.8 × 10 ⁻⁷)	C1	
		$= (2.0 \times 10^{-4} \Omega)^{-4} \Omega$	A1	[2]
	(c) cha so	ange in resistance is (very) small method is not appropriate	M1 A1	[2]

(a) e	energy = average force × extension	B1		
2 2 2 C	$= \frac{1}{2} \times F \times X$	B1		
(Hooke's law) extension proportional to (applied) force	B1		
ŀ	hence $F = kx$ so $E = \frac{1}{2}kx^2$			
s				
(b) (i) correct area shaded	B1	[1]	
(i) 1.0 cm ² represents 1.0 m.L. or correct units used in calculation	C1		
	$F_{\rm e} = 6.4 \pm 0.2$ m.l	A2	[3]	
	(for answer > $\pm 0.2 mJ$ but $\leq \pm 0.4 mJ$, then allow 2/3 marks)	7.	[0]	
(ii	 arrangement of atoms / molecules is changed 	B1	[1]	
	(a) e (h s (b) ((ii	 (a) energy = average force × extension = ½ × F × x (Hooke's law) extension proportional to (applied) force hence F = kx so E = ½kx² (b) (i) correct area shaded (ii) 1.0 cm² represents 1.0 mJ or correct units used in calculation E_S = 6.4 ± 0.2 mJ (for answer > ±0.2 mJ but ≤ ±0.4 mJ, then allow 2/3 marks) (iii) arrangement of atoms / molecules is changed 	(a) energy = average force × extension $= \frac{1}{2} \times F \times x$ (Hooke's law) extension proportional to (applied) force hence $F = kx$ so $E = \frac{1}{2}kx^2$ B1 B1 B1 B1 A0(b) (i) correct area shadedB1(ii) 1.0 cm^2 represents 1.0 mJ or correct units used in calculation $E_s = 6.4 \pm 0.2 \text{ mJ}$ (for answer > $\pm 0.2 \text{ mJ}$ but $\leq \pm 0.4 \text{ mJ}$, then allow 2/3 marks)B1(iii) arrangement of atoms / molecules is changedB1	

3	crystalline:	atoms / ions / particles in a regular arrangement / lattice long range order / orderly pattern	B1			
	polymer:	(lattice) repeats itself(1)long chain molecules / chains of monomers(1)some cross-linking between chains / tangled chains(1)disordered arrangement of molecules / atoms / particles(1)any ordering is short-range(1)B' marks plus any other 2 marks)(1)				
	amorphous:					
	(three 'E					
4	(a (i) Fig	. 5.2	B1	[1]		
	(ii) Fig	. 5.3	B1	[1]		
	(b) kinetic e	energy increases from zero then decreases to zero	B1	[1]		
	(c) (i) $\Delta E_{\rm P} = mg\Delta h / mgh$					
	= $94 \times 10^{-3} \times 9.8 \times 2.6 \times 10^{-2}$ using g = 10 then -1 = 0.024 J					
	(ii) eith	$\begin{array}{l} \text{for } 0.024 = \frac{1}{2} k \times (2.6 \times 10^{-2})^2 \text{or } \frac{1}{2} kd^2 = \frac{1}{2} k \times (2.6 \times 10^{-2})^2 - \frac{1}{2} kd^2 \\ 0.012 = \frac{1}{2} k \times d^2 \qquad \qquad$	C1 C1			
		= 1.8 cm = 1.8 cm	A1	[3]		

<u>CHEMISTRY ONLINE</u> — TUITION —

5	(a	<i>either</i> en or en		nergy (stored)/work done represented by area under graph nergy = <u>average</u> force × extension		B1 C1	
		onorg	=	3.6 J		A1	[3]
	(b)	(i) e 0	ither r r	momente so sum o force = r force on impulse	um before release is zero of momenta (of trolleys) after release is zero rate of change of momentum (M1) trolleys equal and opposite (A1) = change in momentum (M1)	M1 A1	
		Ū		impulse	on each equal and opposite (A1)		[2]
		(ii) 1	M_1	$V_1 = M_2 V_2$	2		[1]
		2	<u>E</u> =	: ¹ / ₂ M ₁ V ₁ ² .	$+ \frac{1}{2} M_2 V_2^2$	B1	[1]
		(iii)	E _κ E _κ	= ½mv² a = p² / 2m	and $p = mv$ combined to give	A0	[1]
		2	<i>m</i> s	smaller, <i>E</i> trolley B	$r_{\rm K}$ is larger because <i>p</i> is the same/constant	M1 A0	[1]

CHEMISTRY ONLINE

(a)	(i)	Young modulus = stress/strain data chosen using point in linear region of graph Young modulus = $(2.1 \times 10^8)/(1.9 \times 10^{-3})$		
		= 1.1 × 10 ¹¹ Pa	A1	[3]
	(ii)	This mark was removed from the assessment, owing to a power-of-ten inconsistency in the printed question paper.		
(b)	area whe	a between lines represents energy/area under curve represents energy en rubber is stretched and then released/two areas are different	M1 A1	
	rele	eased as heat	A1	[3]
	(a) (b)	 (a) (i) (ii) (b) area whe this released 	 (a) (i) Young modulus = stress/strain	 (a) (i) Young modulus = stress/strain