

CHEMISTRY ONLINE

- TUITION

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board
EDEXCEL (A-LEVEL)

TOPIC:

PAPER TYPE:

$$
\text { SOLUTION - } 8
$$43

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Differentiate y with respect to x :

- Apply the quotient rule:
$=\frac{\left(5 x^{4}-8 x^{3}+9 x^{2}-8 x+5\right)\left(x^{4}-4 x^{3}+6 x^{2}-8 x+10\right)\left(x^{5}-2 x^{4}+3 x^{3}-4 x^{2}+5 x-6\right)\left(4 x^{3}-12 x^{2}+12 x-8\right)}{\left(x^{4}-4 x^{3}+6 x^{2}-8 x+10\right)^{2}}$
Simplifying this expression can be quite complex due to the high degree of the polynomials involved. Let's denote the numerator and denominator separately:

Numerator $=\left(5 x^{4}-8 x^{3}+9 x^{2}-8 x+5\right)\left(x^{4}-4 x^{3}+6 x^{2}-8 x+10\right)$
Denominator $=\left(x^{4}-4 x^{3}+5 x^{2}-8 x+10\right)^{2}$
Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:

Since the expression for $\frac{d y}{d x}$ is quite complex, solving for the exact range of values where the curve is increasing may require numerical methods or specialized techniques.
2)

Differentiate y with respect to x :

- Apply the quotient rule:
$=\frac{\left(4 x^{3}-12 x^{2}+12 x-8\right)\left(x^{3}-3 x^{2}+2 x\right)\left(x^{4}-4 x^{3}+6 x^{2}-8 x+10\right)\left(3 x^{2}-6 x+2\right)}{\left(x^{3}-3 x^{2}+2 x\right)^{2}}$
Simplifying this expression can be quite complex due to the high degree of the polynomials involved. Let's denote the numerator and denominator separately:

Numerator $=\left(4 x^{3}-12 x^{2}+12 x-8\right)\left(x^{3}-3 x^{2}+2 x\right)$
Denominator $=\left(x^{3}-3 x^{2}+2 x\right)^{2}$
Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:

Since the expression for $\frac{d y}{d x}$ is quite complex, solving for the exact rnge of values where the curve is increasing may require numerical methods or specialized techniques.
3)

Apply the Chain Rule:

- Let $\mathrm{u}=3 \mathrm{x} 2+2 \mathrm{x}+1$.
- Differentiate u with respect to $\mathrm{x}: \frac{d u}{d x}=6 \mathrm{x}+2$.
- Apply the chain rule: $\frac{d y}{d x}-\frac{d y}{d u} \cdot \frac{d u}{d x}$.

Differentiate y with respect to u :

- $\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}$

Combine the results:

- $\frac{d y}{d x}=\frac{1}{2 \sqrt{3 x^{2}+2 x+1}} \cdot(6 \mathrm{x}+2)$.

Simplify the expression:

- $\frac{d y}{d x}=\frac{3 x+1}{\sqrt{3 x^{2}+2 x+1}}$.

4)

Apply the Chain Rule:

- Let $\mathrm{u}=2 \mathrm{x}^{2}+3 \mathrm{x}+1$.
- Differentiate u with respect to $\mathrm{x}: \frac{d y}{d x}=4 \mathrm{x}+3$.
- Apply the chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$.

Differentiate y with respect to u :

- $\frac{d y}{d u}=3\left(2 \mathrm{x}^{2}+3 \mathrm{x}-1\right)$

Combine the results:

- $\frac{d y}{d x}=3\left(2 \mathrm{x}^{2}+3 \mathrm{x}-1\right)^{2} .(4 \mathrm{x}+3)$.

Simplify the expression:

- $\frac{d y}{d x}=12 \mathrm{x}\left(2 \mathrm{x}^{2}+3 \mathrm{x}-1\right)^{2}+9\left(2 \mathrm{x}^{2}+3 \mathrm{x}-1\right)^{2}$.

Apply the Chain Rule:

- Let $u=3 x^{2}+2 x$.
- Differentiate u with respect to $\mathrm{x}: \frac{d u}{d x}=6 \mathrm{x}+2$.
- Apply the chain rule: $\frac{d u}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$.

Differentiate y with respect to u :

- $\frac{d y}{d u}=\mathrm{e}^{\mathrm{u}}$.

Combine the results:

- $\frac{d y}{d u}=e^{3 x^{2}+2 x} .(6 \mathrm{x}+2)$.

Simplify the expression:

- $\frac{d y}{d x}=(6 x+2) e^{3 x^{2}}+2 x$.

6)

Apply the Chain Rule:

- Let $\mathrm{u}=2 \mathrm{x} 2+3 \mathrm{x}$.
- Differentiate u with respect to $\mathrm{x}: \frac{d u}{d x}-4 \mathrm{x}+3$.
- Apply the chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$.

Differentiate y with respect to u :

- $\frac{d y}{d u}=\cos (\mathrm{u})$.

Combine the results:

- $\frac{d y}{d u}=\cos \left(2 \mathrm{x}^{2}+3 \mathrm{x}\right) .(4 \mathrm{x}+3)$.

7)

Apply the Chain Rule:

- Let $u=3 x 2+2 x+1$.
- Differentiate u with respect to $\mathrm{x}: \frac{d u}{d x}=6 \mathrm{x}+2$.
- Apply the chain rule $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$.

Differentiate y with respect to u :

- $\frac{d y}{d u}-\frac{1}{u}$.

Combine the results:

- $\frac{d y}{d x}=\frac{1}{3 x^{2}+2 x+1} .(6 \mathrm{x}+2)$.

Simplify the expression:

- $\frac{d y}{d x}=\frac{6 x+2}{3 x^{2}+2 x+1}$.

8)

Apply the Chain Rule:

- Let $u=2 x^{3}-x^{2}+3 x$.
- Differentiate u with respect to $\mathrm{x}: \frac{d u}{d x}=6 \mathrm{x}^{2}-2 \mathrm{x}+3$.
- Apply the chain rule:

Differentiate u with respect to u :

- $\frac{d y}{d y}=\mathrm{e}^{\mathrm{x}}$.

Combine the results:

- $\frac{d y}{d x}=e^{2 x^{3+x^{2}}+3 x} \cdot\left(6 x^{2}-2 x+3\right)$.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com Address: 210-Old Brompton Road, London SW5 OBS, UK

