

Phone: +442081445350

www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level & Board	EDEXCEL (A-LEVEL)
TOPIC:	DIFFERENTIATION
PAPER TYPE:	SOLUTION - 4
TOTAL QUESTIONS	8
TOTAL MARKS	43

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

1. Differentiate y with respect to x:

• Apply the chain rule for the absolute value function and the power rule for the polynomial term:

$$\frac{dy}{dx} = \frac{(2x \ 4) (x^2 \ 4x \ |3)}{|x^2 \ 4x \ 3|}$$

2. Determine where the cure is increasing:

- Since the absolute value function can change sign, we need to consider where $x^2 4x + 3$ is positive or negative.
- Factor the quadratic expression: $x^2 4x + 3 = (x 1)(x 3)$
- Analyze the intervals (- ∞ , 1), (1,3) and (3, ∞) to determine where $\frac{dy}{dx} > 0$.

2)

1. Differentiate y with respect to x:

• Apply the chain rule for the absolute value function and the power rule for the polynomial term:

$$\frac{dy}{dx} = \frac{(2x \quad 4)(x^2 \quad 4x \quad 3)}{|x^2 \quad 4x|3|}$$

2. Determine where the curve is increasing:

- Since the absolute value function can change sign, we need to consider where $x^2 4x + 3$ is positive or negative.
- Factor the quadratic expression: $x^2 4x + 3 = (x 1)(x 3)$
- Analyze the intervals $(-\infty, 1)$, (1,3) and $(3,\infty)$ to determine where $\frac{dy}{dx} > 0$.

1. Differentiate y with respect to x:

• Apply the quotient rule and the power rule for the square root function:

$$\frac{dy}{dx} = \frac{\left(\sqrt{x}\right)(2x-2)\left(x^2|2x|1\left(\frac{1}{2\sqrt{x}}\right)\right)}{x}$$

www.chemistryonlinetuition.com

$$\frac{dy}{dx} = \frac{2x\sqrt{x} \left| 2\sqrt{x} \frac{x^2 + 2x + 1}{2\sqrt{x}} \right|}{x}$$

2. Simplify the derivative:

$$\frac{dy}{dx} = \frac{4x^2 |4x x^2 2x 1}{2x\sqrt{x}}$$
$$\frac{dy}{dx} = \frac{3x^2 |2x 1}{2x\sqrt{x}}$$

3. Determine where the curve is increasing:

• Set $\frac{dy}{dx} > 0$ to find the range where the curve is increasing:

$$\frac{dy}{dx} = \frac{3x^2|2x|1}{2x\sqrt{x}} > 0$$

• Solve for x by considering the properties of the rational function and the square root function.

4)

1. Differentiate y with respect to x:

• Apply the chain rule for the logarithmic function and the derivative of the absolute value function:

$$\frac{dy}{dx} = \frac{1}{x^2 - 4} \cdot 2x$$
$$\frac{dy}{dx} = \frac{2x}{x^2 - 4}$$

2. Determine where the curve is increasing:

- Set $\frac{dy}{dx} > 0$ to find the range where the curve is increasing: $\frac{2x}{x^2 - 4} > 0$
- Solve for x by considering the properties of the logarithmic function and the absolute value function.

1. Differentiate y with respect to x:

• Apply the derivative rules for the same function and the natural logarithm:

$$\frac{dy}{dx} = \cos\left(x\right) + \frac{1}{x}$$

2. Determine where the curve is increasing:

- Set $\frac{dy}{dx} > 0$ to find the range where the curve is increasing: $\cos(x) + \frac{1}{x} > 0$
- Solve for x by considering the properties of the cosine function and the logarithmic function.

1. Differentiate y with respect to x:

• Apply the chain rule for the square root function and the derivative of the absolute value function:

$$\frac{dy}{dx} = \frac{1}{2\sqrt{|x^2 - 4|}} \cdot \frac{d}{dx} |x^2 - 4|$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{|x^2 - 4|}} \cdot \frac{d}{dx} |x^2 - 4|$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{|x^2 - 4|}} \cdot 2x$$
$$\frac{dy}{dx} = \frac{1}{\sqrt{|x^2 - 4|}}$$

- **2. Determine where the curve is increasing:**
 - Set $\frac{dy}{dx} > 0$ to find the range where the curve is increasing:

$$\frac{1}{\sqrt{|x^2 \quad 4|}} > 0$$

• Solve for x by considering the properties of the square root function and the absolute value function.

1. Differentiate y with respect to x:

• Apply the power rule for the polynomial term and the derivative of the exponential function:

 $\frac{dy}{dx} = 3x^2 + e^x$

2. Determine where the curve is increasing:

• Set $\frac{dy}{dx} > 0$ to find the range where the curve is increasing:

 $3x^2 + e^x > 0$

• Solve for x by considering the properties the polynomial function and the exponential function.

1. Differentiate y with respect to x:

• Apply the derivative rules for the sine function and the power rule for the polynomial term:

 $\frac{dy}{dx} = \cos(x) + 2x$

2. Determine where the curve is increasing:

- Set ^{dy}/_{dx} > 0 to find the range where the curve is increasing: Cos(x) + 2x > 0
- Solve for x by considering the properties of the cosine function and the polynomial function.

am Sorry !!!!!

Phone: +442081445350 www.chemistryonlinetuitlon.com Email: asherrana@chemistryonlinetuition.com

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE & EDEXCEL Examiner since 2015
- · Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK