

CHEMISTRY ONLINE

 - TUITION -Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board

TOPIC:

PAPER TYPE:
SOLUTION - 4

```
EDEXCEL (A-LEVEL)
```


DIFFERENTIATION

1)

1. Differentiate y with respect to x :

- Apply the chain rule for the absolute value function and the power rule for the polynomial term:

$$
\frac{d y}{d x}=\frac{(2 x 4)\left(x^{2} 4 x \mid 3\right)}{\left|x^{2} 4 x\right| 3 \mid}
$$

2. Determine where the cure is increasing:

- Since the absolute value function can change sign, we need to consider where $x^{2}-4 x+3$ is positive or negative.
- Factor the quadratic expression: $x^{2}-4 x+3=(x-1)(x-3)$
- Analyze the intervals $(-\infty, 1),(1,3)$ and $(3, \infty)$ to determine where $\frac{d y}{d x}>0$.

2)

1. Differentiate y with respect to x :

- Apply the chain rule for the absolute value function and the power rule for the polynomial term:
$\left.\frac{d y}{d x}=\frac{\left(\begin{array}{ll}2 x & 4\end{array}\right)\left(x^{2} 4 x 3\right.}{}\right)$

2. Determine where the curve is increasing:

- Since the absolute value function can change sign, we need to consider where $x^{2}-4 x+3$ is positive or negative.
- Factor the quadratic expression: $x^{2}-4 x+3=(x-1)(x-3)$
- Analyze the intervals $(-\infty, 1),(1,3)$ and $(3, \infty)$ to determine where $\frac{d y}{d x}>0$.

3)

1. Differentiate y with respect to x :

- Apply the quotient rule and the power rule for the square root function:
$\frac{d y}{d x}=\frac{(\sqrt{x})\left(\begin{array}{ll}2 x & 2\end{array}\right)\left(x^{2}|2 x| 1\left(\frac{1}{2 \sqrt{x}}\right)\right)}{x}$
$\frac{d y}{d x}=\frac{2 x \sqrt{x} \left\lvert\, 2 \sqrt{x} \frac{x^{2}+2 x+1}{2 \sqrt{x}}\right.}{x}$

2. Simplify the derivative:

$\frac{d y}{d x}=\frac{4 x^{2} \mid 4 x x^{2} 2 x 1}{2 x \sqrt{x}}$
$\frac{d y}{d x}=\frac{3 x^{2} \mid 2 x 1}{2 x \sqrt{x}}$

3. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$\frac{d y}{d x}=\frac{3 x^{2} \mid 2 x 1}{2 x \sqrt{x}}>0$
- Solve for x by considering the properties of the rational function and the square root function.

4)

1. Differentiate y with respect to x :

- Apply the chain rule for the logarithmic function and the derivative of the absolute value function:
$\frac{d y}{d x}=\frac{1}{x^{2} 4} \cdot 2 x$
$\frac{d y}{d x}=\frac{2 x}{x^{2} 4}$

2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$\frac{2 x}{x^{2} 4}>0$
- Solve for x by considering the properties of the logarithmic function and the absolute value function.

5)

1. Differentiate y with respect to x :

- Apply the derivative rules for the same function and the natural logarithm:
$\frac{d y}{d x}=\cos (x)+\frac{1}{x}$

2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$\operatorname{Cos}(\mathrm{x})+\frac{1}{x}>0$
- Solve for x by considering the properties of the cosine function and the logarithmic function.

6)

1. Differentiate y with respect to x :

- Apply the chain rule for the square root function and the derivative of the absolute value function:
$\frac{d y}{d x}=\frac{1}{2 \sqrt{\left|x^{2} 4\right|}} \cdot \frac{d}{d x}\left|x^{2}-4\right|$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{\left|x^{2} 4\right|}} \cdot \frac{d}{d x}\left|x^{2}-4\right|$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{\left|x^{2} 4\right|}} .2 x$
$\frac{d y}{d x}=\frac{1}{\sqrt{\left|x^{2} 4\right|}}$

2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$\frac{1}{\sqrt{\left|x^{2} 4\right|}}>0$
- Solve for x by considering the properties of the square root function and the absolute value function.

7)

1. Differentiate y with respect to x :

- Apply the power rule for the polynomial term and the derivative of the exponential function:
$\frac{d y}{d x}=3 \mathrm{x}^{2}+\mathrm{e}^{\mathrm{x}}$

2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$3 x^{2}+e^{x}>0$
- Solve for x by considering the properties the polynomial function and the exponential function.

8)

1. Differentiate y with respect to x :

- Apply the derivative rules for the sine function and the power rule for the polynomial term:

$$
\frac{d y}{d x}=\cos (x)+2 x
$$

2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing: $\operatorname{Cos}(\mathrm{x})+2 \mathrm{x}>0$
- Solve for x by considering the properties of the cosine function and the polynomial function.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

. UK Contact: 02081445350

- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com Address: 210-Old Brompton Road, London SW5 OBS, UK

