

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com
Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

TOTAL MARKS

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.
1)

1. Differentiate y with respect to x :

$\frac{d y}{d x}=\frac{\left(3 x^{2} 6 x \mid 2\right)\left(x^{2} 4 x \mid 3\right)\left(x^{3} 3 x^{2} \mid 2 x\right)(2 x 4)}{\left(x^{2} 4 x \mid 3\right)^{2}}$
$\frac{d y}{d x}=\frac{3 x^{4} 12 x^{3}\left|11 x^{2}\right| 12 x 6}{\left(x^{2} 4 x \mid 3\right)^{2}}$

2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ find the range where the curve is increasing:
$3 x^{4}-12 x^{3}+11 x^{2}+12 x-6>0$
- This polynomial inequality may require further analysis or numerical methods to find the exact range of values for which the curve is increasing.

2)

1. Differentiate y with respect to x :

- Apply the quotient rule:

$$
\frac{d y}{d x}=\frac{(2 x)\left(x^{2}|2 x| 1\right)\left(x^{2} 4\right)(2 x \mid 2)}{\left(x^{2}|2 x| 1\right)^{2}}
$$

$\frac{d y}{d x}=\frac{2 x^{3}\left|4 x^{2}\right| 2 x 2 x^{3}|8 x| 8}{\left(x^{2}|2 x| 1\right)^{2}}$
$\frac{d y}{d x}=\frac{4 x^{2}|10 x| 8}{\left(x^{2}|2 x| 1\right)^{2}}$
2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$4 x^{2}+10 x+8>0$
- Solve for x to find the range of values for which the curve is increasing.

3)

1. Differentiate y with respect to x :

- Apply the derivative rules for the absolute value function and the polynomial term:
$\frac{d y}{d x}=\frac{(2 x 4)\left(x^{2} 4 x \mid 3\right)}{\left|x^{2} 4 x\right| 3 \mid}$

2. Determine where the curve is increasing:

- Since the absolute value function can change sign, we need to consider where $x^{2}-4 x$ +3 is positive or negative.
- Factor the quadratic expression: $\mathrm{x} 2-4 \mathrm{x}+3=(\mathrm{x}-1)(\mathrm{x}-3)$
- Analyze the intervals $(-\infty, 1),(1,3)$, and $(x-\infty)$ to determine where $\frac{d y}{d x}>0$.

4)

1. Differentiate y with respect to x :

- Apply the quotient rule:

$$
\frac{d y}{d x}=\frac{\left(12 x^{2} 12 x 36\right)\left(x^{2} 6 x \mid 8\right)\left(4 x^{3} 6 x^{2} 36 x \mid 15\right)(2 x 6)}{\left(x^{2} 6 x \mid 8\right)^{2}}
$$

$\frac{d y}{d x}=\frac{12 x^{4} 72 x^{3}\left|96 x^{2} 12 x^{3}\right| 72 x^{2} 96 x 36 x^{2}\left|216 x 2888 x^{4}\right| 12 x^{3} \mid 72 x^{2} 18 x^{2}}{\left(x^{2} 6 x \mid 8\right)^{2}}$
$\frac{d y}{d x}=\frac{4 x^{4} 60 x^{2}\left|150 x^{2}\right| 120 x \quad 288}{\left(x^{2} 6 x \mid 8\right)^{2}}$
2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$4 x^{4}-60 x^{3}+150 x^{2}+120 x-288>0$
- This polynomial inequality may require further analysis or numerical methods to find the exact range of values for which the curve is increasing.

5)

1. Differentiate y with respect to x :

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\left(6 x^{2} 6 x \mid 4\right)\left(x^{2} 2 x \mid 1\right)\left(2 x^{3} 3 x^{2} \mid 4 x 5\right)(2 x 2)}{\left(x^{2} 2 x \mid 1\right)^{2}} \\
& \frac{d y}{d x}=\frac{6 x^{4} 12 x^{3}\left|4 x^{2} 6 x^{3}\right| 12 x^{2} 4 x\left|4 x^{3} 6 x^{2}\right| 8 x \quad 104 x^{4}\left|6 x^{3} 8 x^{2}\right| 10 x}{\left(x^{2} 2 x \mid 1\right)^{2}} \\
& \frac{d y}{d x}=\frac{2 x^{4}\left|4 x^{3}\right|\left|6 x^{2}\right| 2 x 10}{\left(x^{2} 2 x \mid 1\right)^{2}}
\end{aligned}
$$

2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$2 x^{4}+4 x^{3}+6 x^{2}+2 x+10>0$
- This polynomial inequality may require further analysis or numerical methods to find the exact range of values for which the curve is increasing.

6)

1. Differentiate y with respect to x :

- Apply the quotient rule:
$\frac{d y}{d x}=\frac{\left(3 \mathrm{x}^{2} 6 \mathrm{x} \mid 2\right)\left(\mathrm{x}^{2} 4 \mathrm{x} \mid 3\right)\left(x^{3} 3 x^{2} \mid 2 x\right)(2 x 4)}{\left(x^{2} 4 x \mid 3\right)^{2}}$
$\frac{d y}{d x}=\frac{3 x^{4} 12 x^{3}\left|11 x^{2}\right| 12 x 6}{\left(x^{2} 4 x \mid 3\right)^{2}}$

2. Determine where the curve is increasing?

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$3 x^{4}-12 x^{3}+11 x^{2}+12 x-6>0$
- This polynomial inequality may require further analysis or numerical methods to find the exact range of values for which the curve is increasing.

7)

1. Differentiate y with respect to x :

- Apply the derivative rules for the natural logarithm and the polynomial term: $\frac{d y}{d x}=\frac{3 x^{2} \mid 2}{x^{3} \mid 2 x}$

2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:
$\frac{3 x^{2} \mid 2}{x^{3} \mid 2 x}>0$
- Solve for x to find the range of values for which the curve is increasing.

8)

1. Differentiate y with respect to x :

- Apply the quotient rule:
$\frac{d y}{d x}=\frac{\left(4 x^{3} 12 x^{2} \mid 12 x 4\right)\left(x^{3} 3 x^{2} \mid 3 x 1\right)\left(x^{4} 4 x^{3}\left|6 x^{2} 4 x\right| 1\right)\left(3 x^{2} 6 x \mid 3\right)}{\left(x^{3} 3 x^{2} \mid 3 x 1\right)^{2}}$
$\left.\frac{d y}{d x}=\frac{4 x^{6} 12 x^{5}\left|12 x^{4} 4 x^{4}\right| 12 x^{3} 12 x^{2} \quad 12 x^{4}\left|36 x^{3} 36 x^{2}\right| 12 x 4 x^{5}\left|12 x^{4} 18 x^{3}\right| 12 x^{2} 12 x \mid 4}{\left(x^{3} 3 x^{2} \mid 3 x\right.} 1\right)^{2}$,
$\frac{d y}{d x}=\frac{4 x^{6} 16 x^{5}\left|24 x^{4} 18 x^{3}\right| 12 x}{\left(x^{3} 3 x^{2} \mid 3 x 1\right)^{2}}$

2. Determine where the curve is increasing:

- Set $\frac{d y}{d x}>0$ to find the range where the curve is increasing:

$$
4 x^{6}-16 x^{5}+24 x^{4}-18 x^{3}+12 x>0
$$

- This polynomial inequality may require further analysis or numerical methods to find the exact range of values for which the curve is increasing.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

 CHEMISTRY ONLINE TUITION- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

