

CHEMISTRY ONLINE

 - TUITION -Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board	EDEXCEL (A-LEVEL)
TOPIC:	
	DIFFERENTIATION
PAPER TYPE:	SOLUTION - 10
TOTAL QUESTIONS	8
TOTAL MARKS	43

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Inner function: $g(x)=\cos \left(x^{2}\right)$
Outer function: $h(x)=e^{x}$
Now, let's find the derivatives step by step:

1. Find $h-1(x)$, the derivative of the outer function $h(x)$:
$h^{\prime}(x)=e^{x}$
2. Find $g^{\prime}(x)$, the derivative of the inner function $g(x)$:

$$
g^{\prime}(x)=-2 x \sin \left(x^{2}\right)
$$

3. Substitute $g(x)$ and $g^{\prime}(x)$ into $h^{\prime}(x)$ using the chain rule:
$\mathrm{F}^{\prime}(\mathrm{x})=\mathrm{h}^{\prime}(\mathrm{g}(\mathrm{x})) \cdot \mathrm{g}^{\prime}(\mathrm{x})=e^{\cos \left(x^{2}\right)} \cdot\left(-2 \mathrm{x} \sin \left(\mathrm{x}^{2}\right)\right)$
So, the derivative of $f(\mathrm{x})=e^{\cos \left(x^{2}\right)}$ using the chain rule is $f^{\prime}(\mathrm{x})=-2 \mathrm{x} \sin \left(\mathrm{x}^{2}\right) e^{\cos \left(x^{2}\right)}$.
2)

To differentiate this function using the chain rule, we first identify the inner function and its derivative. In this case, the inner function is $u(x)=2 x^{2}+3 x$, and its derivative is $u^{\prime}(x)=4 x+3$.

Next, we differentiate the outer function $\sin (u)$ with respect to u, which gives us $\cos (u)$.

Finally, applying the chain rule, we multiply the derivative of the outer function with the derivative of the inner function:
$f^{\prime}(x)=\cos \left(2 x^{2}+3 x\right) \cdot(4 x+3)$
So, the derivative of $f(x)=\sin \left(2 x^{2}+3 x\right)$ is $f^{\prime}(x)=(4 x+3) \cos \left(2 x^{2}+3 x\right)$.
3)

To find the derivative of $g(x)$, we apply the chain rule. First, we identify the inner function and its derivative in this case, the inner function is $u(x)=3 x^{2}-2 x$, and its derivative is $u^{\prime}(x)=6 x-2$.

Next, we differentiate the outer function e^{u} with respect to u, which gives us e^{u}.

Finally, applying the chain rule, we multiply the derivative of the outer function with the derivative of the inner function:
$\mathrm{g}^{\prime}(\mathrm{x})=e^{2 x^{2}} .(6 \mathrm{x}-2)$
So, the derivative of $\mathrm{g}(\mathrm{x})=e^{3 x^{2}-2 x}$ is $\mathrm{g}^{\prime}(\mathrm{x})=(6 \mathrm{x}-2) e^{3 x^{2}-2 x}$.

4)

First, identify the inner function and its derivative. In this case, the inner function is $u(x)=2 x^{2}-x^{2}+1$, and its derivative is $u^{\prime}(x)=6 x^{2}-2 x$.

Next, differentiate the outer function \sqrt{u} with respect to u, which gives us $\frac{1}{2 \sqrt{u}}$.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$h^{\prime}(x)=\frac{1}{2 \sqrt{2 x^{2}-x^{2}+1}} \cdot(6 x 2-2 x)$
Simplifying, we get:
$h^{\prime}(x)=\frac{1}{\sqrt{2 x^{2}-x^{2}+1}}$
So, the derivative of $h(x)=\sqrt{2 x^{2}-x^{2}+1}$ is $h^{\prime}(x)=\frac{3 x^{2}-x}{\sqrt{2 x^{2}-x^{2}+1}}$

5)

To find the derivative of $y(x)$, we apply the chain rule. First identify the inner function and its derivative. In this case, the inner function is $u(x)=5 x^{2}-3 x+2$, and its derivative is $u^{\prime}(x)=10 x-3$.

Next, differentiate the outer function $\ln (x)$ with respect to u, which gives us $\frac{1}{u}$.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$y^{\prime}(x)=\frac{1}{5 x^{2}-3 x+2} \cdot(10 x-3)$
Simplifying, we get:
$y^{\prime}(x)=\frac{1}{5 x^{2}-3 x+2}$
So, the derivative of $y(x)=\ln (5 x 2-3 x+2)$ is $y^{\prime}(x)=\frac{10 x-3}{5 x^{2}-3 x+2}$.

6)

To find the derivative of $f(\mathrm{x})$, we apply the chain rule. First, identify the inner function and its derivative. In this case, the inner function is $u(x)=2 x+1$, and its derivative is $\mathrm{u}^{\prime}(\mathrm{x})=2$.

Next, differentiate the outer function u^{4} with respect to u, which gives us $4 u^{3}$.

Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$F^{\prime}(x)=4(2 x+1)^{3} .2$
Simplifying, we get:
$f^{\prime}(x)=8(2 x+1)^{3}$
So, the derivative of $f(x)=(2 x+1)^{4}$ is $f^{\prime}(x)=8(2 x+1)^{3}$.

7)

To find the derivative of $y(x)$, we apply the chain rule. First, identify the inner function and its derivative. In this case, the inner function is $u(x)=2 x 2-x$, and its derivative is $\mathrm{u}^{\prime}(\mathrm{x})=4 \mathrm{x}-1$.

Next, derivative the outer function $\cos (u)$ with respect to u, which give $u s-\sin (u)$.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivativfe of the inner function:
$y^{\prime}(x)=-\sin \left(2 x^{2}-x\right) \cdot(4 x-1)$
So, the derivativfe of $y(x)=\cos \left(2 x^{2}-x\right)$ is $y^{\prime}(x)=-(4 x-1) \sin \left(2 x^{2}-x\right)$.
8)

To find the derivative of $f(\mathrm{x})$, we apply the chain rule. First, identify the inner function and its derivative. In this case, the inner function is $u(x)=2 x 3-x$, and its derivative is $u^{\prime}(x)=6 x 2-1$.

Next, differentiate the outer function e^{u} with respect to u, which gives us e^{u}.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$f(\mathrm{x})=e^{2 x^{3}-x} \cdot\left(6 \mathrm{x}^{2}-1\right)$
So, the derivae $f(\mathrm{x})=e^{2 x^{3}-x}$ is $f^{\prime}(\mathrm{x})=\left(6 \mathrm{x}^{2}-1\right) e^{2 x^{3}-x}$.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

 CHEMISTRY ONLINE TUITION- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
-Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

