

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com
Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS
843

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Differentiation-12

1)

First, identify the inner function and its derivative. In this case, the inner function is $u(x)=5 x^{2}-2 x+3$, and its derivative is $u^{\prime}(x)=10 x-2$.

Next, differentiate the outer function \sqrt{u} with respect to u, which gives us $\frac{1}{2 \sqrt{u}}$.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$f^{\prime}(x)=\frac{1}{2 \sqrt{5 x^{2}-2 x+3}} \cdot(10 x-2)$
Simplifying, we get:
$f^{\prime}(x)=\frac{10 x-2}{2 \sqrt{5 x^{2}-2 x+3}}$
So, the derivative of $f(x)=\sqrt{5 x^{2}-2 x+3}$ is $f^{\prime}(x)=\frac{10 x-2}{2 \sqrt{5 x^{2}-2 x+3}}$

2)

First, identify the inner function and its derivative. In this case, the inner function is $u(x)=3 x^{2}-x$, and its derivative is $u^{\prime}(x)=6 x-1$.

Next, differentiate the outer function $\tan (u)$ with respect to u, which gives $u s \sec ^{2}(u)$. Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$g(x)=\sec ^{2}\left(3 x^{2}-x\right) \cdot(6 x-1)$
So, the derivative of $g(x)=\tan \left(3 x^{2}-x\right)$ is $g^{\prime}(x)=(6 x-1) \sec ^{2}\left(3 x^{2}-x\right)$.

3)

First, identify the inner function and its derivative. In this case, the inner function is $u(x)=2 x^{2}-x+1$, and its derivative is $u^{\prime}(x)=6 x^{2}-1$.

Next, differentiate the outer function \sqrt{u} with respect to u, which gives us $\frac{1}{2 \sqrt{u}}$.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$f^{\prime}(x)=\frac{1}{2 \sqrt{2 x^{2}}-x+1} \cdot\left(6 x^{2}-1\right)$
Simplifying, we get:
$f^{\prime}(x)=\frac{6 x^{2}-1}{2 \sqrt{2 x^{2}-x+1}}$
So, the derivative of $f(x)=\sqrt{2 x^{3}-x+1}$ is $f^{\prime}(x)=\frac{6 x^{2}-1}{2 \sqrt{2 x^{3}-x+1}}$

4)

First, identify the inner function and its derivative in this case, the inner function is $u(x)=2 x^{2}+4 x$, and its derivative is $u^{\prime}(x)=4 x+4$.

Next, differentiate the outer function $\cos (u)$ with respect to u, which gives us $-\sin (u)$.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$y^{\prime}(x)=-\sin \left(2 x^{2}+4 x\right) \cdot(4 x+4)$
So, the derivative of $y(x)=\cos \left(2 x^{2}+4 x\right)$ is $y^{\prime}(x)=-(4 x+4) \sin \left(2 x^{2}+4 x\right)$.

5)

To find the derivative of $f(x)$, we apply the chain rule. First, identify the inner function and its derivative. In this case, the inner function is $u(x)=4 x 2+3 x$, and its derivative is $\mathrm{u}^{\prime}(\mathrm{x})=8 \mathrm{x}+3$.

Next, differentiate the outer function $\cos (u)$ with respect to u, which gives $u s-\sin (u)$.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$f^{\prime}(x)=-\sin \left(4 x^{2}+3 x\right) \cdot(8 x+3)$
So, the derivative of $f(x)=\cos (4 x 2+3 x)$ is $f^{\prime}(x)=-(8 x+3) \sin (4 x 2+3 x)$.

First, identify the inner function and its derivative. In this case, the inner function is $u(x)=-2 x^{2}+5 x$, and its derivative is $u^{\prime}(x)=-4 x+5$.

Next, differentiate the outer function e^{u} with respect to u, which gives us e^{u}.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$Y^{\prime}(\mathrm{x})=e^{2 x^{2}+5 x} \cdot(-4 \mathrm{x}+5)$
So, the derivative of $\mathrm{y}(\mathrm{x})=e^{2 x^{2}+5 x}$ is $\mathrm{y}^{\prime}(\mathrm{x})=(-4 \mathrm{x}+5) e^{2 x^{2}+5 x}$.

7)

First, identify the inner function and its derivative. In this case, the inner function is $u(x)=3 x^{2}+2 x+1$, and its derivative is $u^{\prime}(x)=6 x+2$.

Next, differentiate the outer function \sqrt{u} with respect to u, which gives us $\frac{1}{2 \sqrt{u}}$
Finally apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$f^{\prime}(x)=\frac{1}{2 \sqrt{3 x^{2}}+2 x+1} \cdot(6 x+2)$
Simplifying, we get:
$f^{\prime}(x)=\frac{6 x+2}{2 \sqrt{3 x^{2}+2 x+1}}$
So, the derivative of $f(x)=\sqrt{3 x^{2}+2 x+1}$ is $f^{\prime}(x)=\frac{6 x+2}{2 \sqrt{\sqrt{3 x^{2}+2 x+1}}}$.

8)

First, identify the inner function and its derivative. In this case, the inner function is $u(x)=4 x^{2}-3 x+1$, and its derivative is $u^{\prime}(x)=8 x-3$.

Next, differentiate the outer function $\ln (u)$ with respect to u, which gives $u s \frac{1}{u}$.
Finally, apply the chain rule by multiplying the derivative of the outer function with the derivative of the inner function:
$y^{\prime}(x)=\frac{1}{4 x^{2}-3 x+1} \cdot(8 x-3)$
Simplifying, we get:
$y^{\prime}(x)=\frac{8 x-3}{4 x^{2}-3 x+1}$
So, the derivative of $y(x)=\ln (4 x 2-3 x+1)$ is $y^{\prime}(x)=\frac{8 x-3}{4 x^{2}-3 x+1}$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: Www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

