

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board
EDEXCEL (A-LEVEL)

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

850

ARITHMETIC SEQUENCE

SOLUTION-4

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.
Q. 1
(a) Using the arithmetic sequence formula:

$$
a n=a 1+(n-1) d
$$

Where:
an is the nth term (speed in the nth gear), a1 is the first term (speed in the 1st gear), n is the term number (gear number), and d is the common difference between successive terms.

First, find the common difference (d):

$$
\begin{aligned}
& d=(a 5-a 1) /(5-1) \\
& d=(150-30) /(5-1) \\
& d=120 / 4 \\
& d=30
\end{aligned}
$$

Now, find the speed in the 3rd gear (a3):

$$
\begin{aligned}
& a 3=a 1+(3-1) d \\
& a 3=30+2 \times 30 \\
& a 3=30+60 \\
& \text { a3 }=90 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

So, the speed in the $3 r d$ gear is $90 \mathrm{~km} / \mathrm{h}$.
(b) The geometric sequence:

$$
a n=a 1 \times r^{\wedge}(n-1)
$$

Where:
an is the nth term (speed in the nth gear),
a1 is the first term (speed in the 1st gear),
n is the term number (gear number), and
r is the common ratio between successive terms.

First, find the common ratio (r):
$r=a 4 / a 5$
$r=120 / 150$
$r=0.8$

Now, find the speed in the 4th gear (a4):

$$
\begin{aligned}
\mathrm{a} 4 & =\mathrm{a} 1 \times \mathrm{r}^{\wedge}(4-1) \\
\mathrm{a} 4 & =30 \times(0.8)^{\wedge} 3 \\
\mathrm{a} 4 & \approx 58.59 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

So, the speed in the 4th gear is approximately $58.59 \mathrm{~km} / \mathrm{h}$.
Q. 2
(a) To find the common difference (d) in an arithmetic sequence, we can use the formula for the nth term of the sequence:

$$
a n=a 1+(n-1) d
$$

In this case:
a1 = 3 (the first term)
a10 $=27$ (the 10th term)
$\mathrm{n}=10$ (since we are given the 10th term)

We can use these values to find d :

$$
27=3+(10-1) d
$$

Solving for d :

$$
27=3+9 d
$$

$9 \mathrm{~d}=24$
$d=24 / 9=8 / 3$

So, the common difference is $8 / 3$.
(b) To find the sum of the first 15 terms (S15), we can use the formula for the sum of an arithmetic series:

$$
S n=n / 2[2 a 1+(n-1) d]
$$

In this case:

$$
\begin{aligned}
& n=15 \text { (number of terms) } \\
& \text { a1 }=3 \text { (first term) } \\
& d=8 / 3 \text { (common difference) }
\end{aligned}
$$

Now, plug these values into the formula:

$$
S 15=15 / 2[2(3)+(15-1)(8 / 3)]
$$

Calculate this expression to find S15.
Q. 3
(a) To find the common difference (d), we can use the formula for the n-th term of an arithmetic sequence:

$$
a n=a 1+(n-1) d
$$

In this case:
$\mathrm{n}=15$ (since we are given the 15th term)

Now, we can use these values to find d :

$$
34=10+(15-1) d
$$

Solving for d :

$$
\begin{aligned}
& 34=10+14 d \\
& 14 d=24 \\
& d=24 / 14=12 / 7
\end{aligned}
$$

So, the common difference (d) is $12 / 7$.
(b) To find the sum of the first 100 terms (S100), we can use the formula for the sum of an arithmetic series:

$$
S n=n / 2[2 a 1+(n-1) d]
$$

In this case:

$$
\begin{aligned}
& n=100 \text { (number of terms) } \\
& a 1=10 \text { (first term) } \\
& d=12 / 7 \text { (common difference) }
\end{aligned}
$$

Now, plug these values into the formula:

$$
S 100=100 / 2[2(10)+(100-1)(12 / 7)]
$$

Calculate this expression to find S100.
Q. 4
(a) To find the common difference (d), we can use the formula for the n-th term of an arithmetic sequence:

$$
a n=a 1+(n-1) d
$$

In this case:
a1 = 7 (the first term)
a12 $=31$ (the 12th term)
$\mathrm{n}=12$ (since we are given the 12 th term)

Now, we can use these values to find d:

$$
31=7+(12-1) d
$$

Solving for d :

$$
d=24 / 11
$$

So, the common difference (d) is $24 / 11$.
(b) To find the sum of the first 20 terms (S20), we can use the formula for the sum of an arithmetic series:

$$
S n=n / 2[2 a 1+(n-1) d]
$$

In this case:
$\mathrm{n}=20$ (number of terms)
a1 $=7$ (first term)
$d=24 / 11$ (common difference)

Now, plug these values into the formula:

$$
S 20=20 / 2[2(7)+(20-1)(24 / 11)]
$$

Calculate this expression to find S20.
Q. 5
(a) To find the common difference (d) of an arithmetic sequence, we can use the formula for the n-th term:

$$
a n=a 1+(n-1) d
$$

In this case, we know that:
a1 = 12 (the first term)
$\mathrm{a} 8=38$ (the eighth term)
$\mathrm{n}=8$ (since we are given the eighth term)

We can use these values to find d :

$$
38=12+7 d
$$

Solving for d :

$$
d=26 / 7
$$

So, the common difference is $26 / 7$.
(b) To find the sum of the first 15 terms (S15) of the same arithmetic sequence, we can use the formula for the sum of an arithmetic series:
$\mathrm{Sn}=\mathrm{n} / 2[2 \mathrm{a} 1+(\mathrm{n}-1) \mathrm{d}]$

In this case, we know that:
$\mathrm{n}=15$ (number of terms)
a1 = 12 (first term)
$d=26 / 7$ (common difference)

Now, we can plug these values into the formula:

$$
S 15=15 / 2[2(12)+(15-1)(26 / 7)]
$$

Calculating this expression will give us the sum of the first 15 terms of the sequence.
Q. 6
(a) Using the arithmetic sequence formula:

$$
a n=a 1+(n-1) d
$$

where:
an is the speed in the nth gear, a1 is the speed in the 1st gear, n is the term number (gear number), and d is the common difference between successive terms.

First, we need to find the common difference:

$$
\begin{aligned}
& d=(a 9-a 1) /(9-1) \\
& d=(180-35) / 8 \\
& d=145 / 8
\end{aligned}
$$

Now, we can find the speed in the 6th gear:

$$
\begin{aligned}
& \mathrm{a} 6=\mathrm{a} 1+(6-1) \mathrm{d} \\
& \mathrm{a} 6=35+5(145 / 8) \\
& \mathrm{a} 6=35+725 / 8 \\
& \mathrm{a} 6=280 / 8+725 / 8 \\
& \mathrm{a} 6=1005 / 8 \\
& \mathrm{a} 6 \approx 125.63 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

So, the speed in the 6th gear is approximately $125.63 \mathrm{~km} / \mathrm{h}$.
(b) The geometric sequence:

$$
a n=a 1 \times r^{\wedge}(n-1)
$$

where:
an is the speed in the nth gear, a1 is the speed in the 1st gear, n is the term number (gear number), and r is the common ratio between successive terms.

First, we need to find the common ratio:

$$
\begin{aligned}
& r=(a 9 / a 8)=180 / 155 \text { (given) } \\
& r=36 / 31
\end{aligned}
$$

Now, we can find the speed in the 7th gear:

$$
\begin{aligned}
& a 7=a 1 \times r^{\wedge}(7-1) \\
& a 7=35 \times(36 / 31)^{\wedge} 6 \\
& a 7 \approx 61.75 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

So, the speed in the 7th gear is approximately $61.75 \mathrm{~km} / \mathrm{h}$.
Q. 7
(a) Using the arithmetic sequence formula:

$$
a n=a 1+(n-1) d
$$

where:
an is the speed in the nth gear,
a1 is the speed in the 1st gear,
n is the gear number, and
d is the common difference between successive terms.

First, let's find the common difference (d):

$$
\begin{aligned}
& d=(a 6-a 1) /(6-1) \\
& d=(45-15) / 5 \\
& d=6
\end{aligned}
$$

Now, let's find the speed in the 4th gear (a4):

$$
\begin{aligned}
& \mathrm{a} 4=\mathrm{a} 1+(4-1) \mathrm{d} \\
& \mathrm{a} 4=15+3 \times 6 \\
& \mathrm{a} 4=33 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

(b) The geometric sequence:

$$
a n=a 1 \times r^{\wedge}(n-1)
$$

where:
an is the speed in the nth gear, a1 is the speed in the 1st gear, n is the gear number, and r is the common ratio between successive terms.

First, let's find the common ratio (r):

$$
r=a 5 / a 6
$$

Given that a6 $=45 \mathrm{~km} / \mathrm{h}$ and $\mathrm{a} 5=36 \mathrm{~km} / \mathrm{h}$, we get:

$$
\begin{aligned}
& r=36 / 45 \\
& r=0.8
\end{aligned}
$$

Now, let's find the speed in the 5th gear (a5):

$$
a 5=a 1 \times r^{\wedge}(5-1)
$$

Given that a1 = 15, we get:

$$
\begin{aligned}
& \mathrm{a} 5=15 \times 0.8^{\wedge} 4 \\
& \mathrm{a} 5 \approx 36.56 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

So, the speed in the 4th gear is $33 \mathrm{~km} / \mathrm{h}$ and the speed in the 5th gear is approximately $36.56 \mathrm{~km} / \mathrm{h}$.
Q. 8
(a) To find the common difference (d) in an arithmetic series, we can use the formula for the nth term of an arithmetic sequence:

$$
a n=a 1+(n-1) d
$$

Where:
an is the nth term
a1 is the first term
n is the number of terms
d is the common difference

In your case:
a1 = 16 (the first term)
a21 $=24$ (the 21st term)
$\mathrm{n}=21$ (since we are given the 21st term)

Now, we can use these values to find d :

$$
24=16+(21-1) d
$$

Solving for d :

$$
\begin{aligned}
& 24=16+20 d \\
& 20 d=8
\end{aligned}
$$

$$
d=8 / 20=2 / 5
$$

So, the common difference (d) is $2 / 5$.
(b) Now, to find the sum of the first 500 terms (S500), we can use the formula for the sum of an arithmetic series:

$$
S n=n / 2[2 a 1+(n-1) d]
$$

Where:
Sn is the sum of the first n terms
n is the number of terms
a1 is the first term
d is the common difference

In this case:
$\mathrm{n}=500$ (number of terms)
a1 = 16 (first term)
$d=2 / 5$ (common difference)

Now, plug these values into the formula:

$$
S 500=500 / 2[2(16)+(500-1)(2 / 5)]
$$

Calculate this expression to find S500.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

