

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board

```
EDEXCEL (A-LEVEL)
```


TOPIC:

GEOMETRIC SERIES

PAPER TYPE:

SOLUTION - 18

Q. 1

we can use the formula for the sum of a geometric series

$$
S=\frac{a\left(1-r^{n}\right)}{1-r}
$$

In this case, $a=3$ and $r=2$ Now, let's find the sum:

$$
S=\frac{3\left(1-r^{n}\right)}{1-2}
$$

Since $r=2$ the series continues to double with each them, if you want the sum for a specific number of terms (n), you can substitues that value not formula

If you what the sum for an infinite geometric series, where n goes to infinity $(\mathrm{n} \rightarrow \infty)$. We can simplify the formula further.

$$
S=\frac{3\left(1-2^{n}\right)}{1-2}
$$

Since $r=2$ and the absolute value of the common ration is greater than 1, as n approaches infinity, $\left(1-2^{\mathrm{n}}\right)$ will be become very large in magnitued, and the series will diverge. There are, the sum for an infinite geometric series with $\mathrm{r}=2$ does not exist.

Q. 2

To find the sum (S) of the geommetric series, use the formula:

$$
S=\frac{a-\left(-0.5^{n}\right)}{1-(1-0.5)}
$$

This formula will give you the sum for a specific number of terms (n) if you want the sum for an infinite geometric series, let me know, and I can provide that as will.

Q. 3

To determine the sum (S) of the geometric series, use the formula:

$$
S=\frac{a\left(1-r^{n}\right)}{1-r}
$$

In this case $a=2$ and $r=3$. The formula becomes:

$$
S=\frac{2\left(1-3^{n}\right)}{1-3}
$$

This formula will give you the sum for a specific number of terms (n) if you want the sum for an infinite geometric series, let me know, and I can provide that as will.

Q. 4

To find the sum (S) of the geometric series, use the formula:

$$
S=\frac{a\left(1-r^{n}\right)}{1-r}
$$

In this case, $\mathrm{a}=4$ and $\mathrm{r}=-\frac{1}{2}$. The formula becomes:

$$
S=\frac{4\left(-\left(-\frac{1}{2}\right)^{n}\right.}{1-\left(-\frac{1}{2}\right)}
$$

This formula will give you the sum for a specific number of terms (n).

Q. 5

To find the sum (S) of the geometric eries, use the formula:

$$
S=\frac{a\left(1-r^{n}\right)}{1-r}
$$

In this case, $\mathrm{a}=7$ and $\mathrm{r}=-\frac{1}{3}$. The formula becomes.

$$
S=\frac{7\left(1-\left(\left(-\frac{1}{3}\right)^{n}\right)\right.}{1-\left(-\frac{1}{3}\right)}
$$

This formula will give you the sum for a specific number of terms (n).
Q. 6

To determine the sum (S) of the geometric series, use the formula.

$$
S=\frac{a\left(1-r^{n}\right)}{1-r}
$$

In this case $a=1$ and $r=\frac{2}{3}$. The formula becomes

$$
S=\frac{1-\left(1-\left(\left(\frac{2}{3}\right)^{n}\right)\right.}{1-\frac{2}{3}}
$$

This formula will give you the sum for a specific number of terms (n).

Q. 7

To find the sum (S) of the geometric series, use the formula:

$$
S=\frac{a\left(1-r^{n}\right)}{1-r}
$$

In this case $a=-5$ and $r=-2$. The formula becomes.

$$
S=\frac{-5\left(1--2^{n}\right)}{1-(-2)}
$$

This formula will give you the sum for a specific number of terms (n).

Q. 8

To find the sum (S) of the geometric series, use the formula:

$$
S=\frac{a\left(1-r^{n}\right)}{1-r}
$$

In this case $1=6$ and $r=\frac{1}{2}$. The formula becomes:

$$
S=\frac{6\left(1-\left(\frac{1}{2}\right)^{n}\right.}{1-\frac{1}{2}}
$$

This formula will give you the sum for a specific number of terms (n).

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
-Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

