

Phone: +442081445350
www.chemistryonlinetuition.com

## Email:asherrana@chemistryonlinetuition.com

## PURE MATH

## ALGEBRA AND FUNCTION

Level \& Board
EDEXCEL (A-LEVEL)

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

TOTAL MARKS

LINEAR MODAL

## SOLUTION - 3

## 8

35

## Q1.

Find the slope (m):
$\mathrm{m}=$ change in $\mathrm{y} /$ change in $\mathrm{x}=(40,000-15,000) /(5-2)=25,000 / 3$
Now, use one of the points (let's use $(2,15)$ ) to find the $y$-intercept (b):

$$
\begin{aligned}
& y=m x+b \\
& 15,000=(25,000 / 3)(2)+b \\
& b=5,000 / 3
\end{aligned}
$$

So, the equation that models the balance (B) in thousands of dollars over time ( $t$ in years) for this savings account is:

$$
B=(25,000 / 3) t+5,000 / 3
$$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 3 years ( $\mathrm{t}=3$ ):

$$
B=(25,000 / 3)(3)+5,000 / 3=30,000
$$

Therefore, the balance after 3 years would be $\$ 30,000$.

## Q2.

Find the slope (m):
$\mathrm{m}=$ change in $\mathrm{y} /$ change in $\mathrm{x}=(25,000-10,000) /(3-1)=15,000 / 2$
Now, use one of the points (let's use $(1,10)$ ) to find the $y$-intercept (b):

$$
\begin{aligned}
& y=m x+b \\
& 10,000=(15,000 / 2)(1)+b \\
& b=10,000-(15,000 / 2)=-5,000
\end{aligned}
$$

So, the equation that models the balance (B) in thousands of dollars over time ( $t$ in years) for this savings account is:

$$
B=(15,000 / 2) t-5,000
$$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 4 years $(t=4)$ :

$$
B=(15,000 / 2)(4)-5,000=20,000
$$

Therefore, the balance after 4 years would be $\$ 20,000$.

Q3.
Find the slope (m):
$\mathrm{m}=$ change in $\mathrm{y} /$ change in $\mathrm{x}=(30,000-8,000) /(6-1)=22,000 / 5$
Now, use one of the points (let's use $(1,8)$ ) to find the y-intercept (b):

$$
\begin{aligned}
& y=m x+b \\
& 8,000=22,000 / 5(1)+b \\
& b=4,600
\end{aligned}
$$

So, the equation that models the balance (B) in thousands of dollars over time ( t in years) for this savings account is:

$$
B=22,000 / 5 t+4,600
$$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 3 years $(t=3)$ :

$$
B=22,000 / 5(3)+4,600=16,520
$$

Therefore, the balance after 3 years would be $\$ 16,520$.

## Q4.

To find the slope (m), use the formula:
$m=$ change in $y /$ change in $x$

In this case, the values are:

$$
\begin{aligned}
& y 2-y 1=42,000-12,000 \\
& x 2-x 1=5-2
\end{aligned}
$$

So, the slope is:

$$
m=(42,000-12,000) /(5-2)=30,000 / 3=10,000
$$

Next, to find the y-intercept (b), use one of the points, let's use $(2,12)$ :

$$
\begin{aligned}
& y=m x+b \\
& 12,000=10,000(2)+b
\end{aligned}
$$

Simplifying the equation, we get:

$$
b=12,000-20,000=-8,000
$$

Therefore, the equation that models the balance (B) in thousands of dollars over time ( t in years) for this savings account is:

$$
B=10,000 t-8,000
$$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 3 years $(t=3)$ :

$$
B=10,000(3)-8,000=22,000
$$

So, the balance after 3 years would be $\$ 22,000$.

## Q5.

For part (a)
We have two data points, which we can use to create a linear model.
The first data point is interpreted as 5 kilometers, where the time $(\mathrm{t})$ is 10 seconds and the altitude (A) is 10 meters.

The second data point is interpreted as 20 kilometers, where the time ( $t$ ) is 30 seconds and the altitude (A) is 20 meters.

To create a linear equation, we can use the point-slope form. This is given by:
$(\mathrm{A}-\mathrm{A} 1)=\mathrm{m}(\mathrm{t}-\mathrm{t} 1)$, where $(\mathrm{t} 1, \mathrm{~A} 1)$ is a point on the line, and m is the slope. Using the first data point ( 10,5 ), we can find the slope (m):

$$
\mathrm{m}=(\mathrm{A}-\mathrm{A} 1) /(\mathrm{t}-\mathrm{t} 1)=(5-10) /(10-10)=-5 / 0
$$

We can't divide by 0 , so we need to find another point on the line. Using the second data point $(30,20)$, we can solve for $m$ :

$$
\mathrm{m}=(\mathrm{A}-\mathrm{A} 1) /(\mathrm{t}-\mathrm{t} 1)=(20-5) /(30-10)=15 / 20=3 / 4
$$

Now that we have m, we can write the equation in point-slope form:

$$
(\mathrm{A}-5)=(3 / 4)(\mathrm{t}-10)
$$

Finally, we simplify and express it in slope-intercept form ( $y=m x+c$ ):

$$
A=(3 / 4) t-5 / 2
$$

## For part (b)

we need to check if the linear model fits the fact that the rocket's altitude was approximately 0 kilometers at the time of launch $(t=0)$. We can substitute $t=0$ into the equation:

$$
A=(3 / 4)(0)-5 / 2=-5 / 2
$$

Since the result is not close to 0 kilometers, it suggests that the linear model may not be the best fit for the given data.

## Q6.

First Data Point: \$50,000 (represented as $\mathrm{t}=3, \mathrm{C}=50$ )
Second Data Point: \$120,000 (represented as $\mathrm{t}=9, \mathrm{C}=120$ )

Use the above data points to create a linear model for the production cost over time. Determine the slope ' $m$ ' using the point-slope form and write the equation of the linear model in point-slope form. If needed, simplify and express the equation in slope-intercept form ( $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ ).

To check if the model is accurate, verify if the production cost was approximately $\$ 30,000$ when production started $(t=0)$. Substitute $t=0$ into the equation:

$$
C=m(0-3)+50
$$

If the result is close to $\$ 30,000$, it supports the use of the linear model. If there is a significant difference, it suggests that the linear model may not be the best fit for the given data.

## Q7.

For part (a)
We can use the given data to create a linear model.
The first data point is when $\mathrm{t}=4$ and $\mathrm{H}=30$.
The second data point is when $\mathrm{t}=10$ and $\mathrm{H}=65$.
We can use the point-slope form of a linear equation to find the slope m .
The point-slope form of a linear equation is:

$$
(y-y 1)=m(x-x 1),
$$

where ( $\mathrm{x} 1, \mathrm{y} 1$ ) is a point on the line. Using the first data point $(4,30)$, we can find the slope $m$.
The slope is $\mathrm{m}=(\mathrm{H} 2-\mathrm{H} 1) /(\mathrm{t} 2-\mathrm{t} 1)=(65-30) /(10-4)=5$.
The equation of the line in point-slope form is: $(y-30)=5(x-4)$.

We can simplify this to slope-intercept form, $\mathrm{y}=5 \mathrm{x}+10$, if needed.

For part (b) we need to check if the model fits the fact that the plant's height was approximately 10 centimeters when it was planted, which means $\mathrm{t}=0$.

We can substitute $\mathrm{t}=0$ into the equation to get $\mathrm{H}=5(0)+10=10$.
Since the result is close to 10 centimeters, it supports the use of the linear model.

If there is a significant difference between the predicted value and the actual value, it suggests that the linear model may not be the best fit for the given data.

## Q8.

For part (a)
We have been provided with two data points, where the height of a tree is represented as ' H ' in meters, and the time since planting is represented as 't' in years.

The data points are as follows:

1. The height of the tree was 2.35 meters at 3 years $(\mathrm{H}=2.35, \mathrm{t}=3)$.
2. The height of the tree was 3.28 meters at 6 years ( $\mathrm{H}=3.28, \mathrm{t}=6$ ).

To determine the equation of the linear model, we will use the point-slope form of a linear equation:

$$
(\mathrm{H}-\mathrm{H} 1)=\mathrm{m}(\mathrm{t}-\mathrm{t} 1)
$$

Here, ( $\mathrm{t} 1, \mathrm{H} 1$ ) is a point on the line, and ' m ' is the slope. By using the first data point ( $\mathrm{t} 1=3, \mathrm{H} 1=2.35$ ), we can determine the slope ' m ' as follows:

$$
m=(H-2.35) /(t-3)
$$

Next, we will substitute the second data point ( $\mathrm{t}=6, \mathrm{H}=3.28$ ) into the equation:

$$
3.28-2.35=m(6-3)
$$

Solving for ' $m$ ', we get:

$$
\mathrm{m}=0.31
$$

Now, we can write the equation in point-slope form by using the slope and any point on the line. Let's use the point ( $3,2.35$ ):

$$
(\mathrm{H}-2.35)=0.31(\mathrm{t}-3)
$$

Finally, we can simplify the equation and write it in slope-intercept form:

$$
\mathrm{H}=0.31 \mathrm{t}-0.28
$$

## For part (b)

we are given that the height of the tree was approximately 140 cm when it was planted $(\mathrm{t}=0)$. To check if this fact supports the use of the linear model, we substitute $\mathrm{t}=0$ into the equation:

$$
\mathrm{H}=0.31(0)-0.28
$$

This gives us a height of -0.28 meters, which is not close to 140 cm . Therefore, the linear model may not be the best fit for the given data.


- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor


## CONTACT INFORMATION FOR

 CHEMISTRY ONLINE TUITION- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

