

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board
EDEXCEL (A-LEVEL)

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

TOTAL MARKS
44 individual/ company/organization involved in copyright abuse.

Q1.

To find the slope of a line (m), we use the formula: $m=($ change in $y) /$ (change in x).

In this case, the change in y is 10,000 (the difference between 15,000 and 5,000), and the change in x is 2 (the difference between 3 and 1). So,
$m=10,000 / 2=5,000$.

To find the y-intercept (b), we use one of the given points on the line. Let's use the point $(1,5)$.

We can use the formula:
$y=m x+b$, where y is the value of the y-coordinate, x is the value of the $x-$ coordinate, m is the slope, and b is the y-intercept.

Plugging in the values, we get:
$5=5,000(1)+b$

Simplifying, we get:
$b=5-5,000=-4,995$

Therefore, the equation that models the balance in thousands of dollars over time (t in years) for this savings account is:
$B=5,000 t-4,995$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 4 years $(t=4)$, you can plug in the value of t and solve for B :
$B=5,000(4)-4,995=20,005$

Therefore, the balance after 4 years would be $\$ 20,005$.

Q2.

To find the slope (m), we use the formula $\mathrm{m}=$ change in $\mathrm{y} /$ change in x .
Given two points $(32000,5)$ and $(8000,2)$,
the change in y is $32000-8000=24000$, and the change in x is $5-2=3$. So,
$m=24000 / 3=8000$.

To find the y-intercept (b), we use one of the given points and plug in the value of m. Let's use $(2,8)$.

Therefore, $8=8000(2)+b$. Solving for b, we get $b=-16000$.

Hence, the equation that represents the balance (B) in thousands of dollars over time (t in years) for this savings account is $\mathrm{B}=8000 \mathrm{t}-16000$.

We can use this equation to predict the balance for any given time in the future.

For example, if we want to know the balance after 3 years ($\mathrm{t}=3$), then $\mathrm{B}=8000(3)-16000=\$ 16000$.

Q3.
To find the slope (m) of a savings account balance in thousands of dollars over time in years (t), we use the formula: $\Delta \mathrm{B} / \Delta \mathrm{t}$.

In this case, the change in B is 20,000-4,000, and the change in t is 6-2.

So, the slope is $(20,000-4,000) /(6-2)=16,000 / 4=4,000$.

Next, we can use one of the points, say (2,4), to find the y-intercept (b) of the equation that models the balance in thousands of dollars over time in years.

The formula for a linear equation is: $\mathrm{B}=\mathrm{m}^{*} \mathrm{t}+\mathrm{b}$. Substituting the values we have, we get $4,000=4,000(2)+b$, which simplifies to $b=-4,000$.

Therefore, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:
$B=4,000 t-4,000$. This equation can be used to predict the balance for any given time in the future.

For instance, if we want to know the balance after 3 years, we substitute $t=3$ in the equation and get: $B=4,000(3)-4,000=8,000$.

Hence, the balance after 3 years would be $\$ 8,000$.

Q4.

Find the slope (m):
$m=$ change in $y /$ change in $x=(24,000-6,000) /(5-2)=18,000 / 3=6,000$

Now, use one of the points (let's use $(2,6)$) to find the y-intercept (b): $y=m x+b$
$6,000=6,000(2)+b$
$b=6,000-12,000=-6,000$

So, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:
$B=6,000 t-6,000$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 4 years $(t=4)$: $B=6,000(4)-6,000=18,000$

Therefore, the balance after 4 years would be $\$ 18,000$.

Q5.
Find the slope (m):
$\mathrm{m}=$ change in $\mathrm{y} /$ change in x
$=(30,000-10,000) /(6-3)$
$=20,000 / 3$

Now, use one of the points (let's use $(3,10)$) to find the y-intercept (b):
$y=m x+b$
$10,000=(20,000 / 3)(3)+b$
$10,000=20,000+b$
$b=-10,000$

So, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:
$B=(20,000 / 3) t-10,000$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 4 years $(t=4)$: $B=(20,000 / 3)(4)-10,000$
$=26,666.67$

Therefore, the balance after 4 years would be approximately $\$ 26,666.67$.

Q6.

Find the slope (m):
$\mathrm{m}=$ change in $\mathrm{y} /$ change in x
$=(15,000-5,000) /(4-2)$
$=10,000 / 2$
$=5,000$

Now, use one of the points (let's use $(2,5)$) to find the y-intercept (b):
$y=m x+b$
$5,000=5,000(2)+b$
b $=5,000-10,000$
b $=-5,000$

So, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:
$B=5,000 t-5,000$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 3 years $(t=3)$:
$B=5,000(3)-5,000$
$=10,000$

Therefore, the balance after 3 years would be \$10,000.

Q7.

To find the slope (m) of a savings account balance over time, we can use the following formula:
$\mathrm{m}=($ change in y$) /($ change in x$)$

In this case, the changes are as follows:
change in $\mathrm{y}=\$ 28,000-\$ 7,000=\$ 21,000$
change in $x=5-2=3$

So, the slope is:
$\mathrm{m}=21,000 / 3=7,000$

Now, we can use one of the points on the line, such as (2, 7), to find the yintercept (b). Using the formula $\mathrm{y}=\mathrm{mx}+\mathrm{b}$, we can substitute the values we have found to solve for b :
$7=(7,000)(2)+b$
$7=14,000+b$
b $=-7,000$

Therefore, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:
$B=7,000 t-7,000$

This equation can be used to predict the balance for any given time in the future. For example, if we want to know the balance after 3 years $(\mathrm{t}=3)$:
$B=7,000(3)-7,000=\$ 14,000$

Therefore, the balance after 3 years would be $\$ 14,000$.

Q8.

To find the slope (m), we use the formula $\mathrm{m}=($ change in y$) /($ change in x$)$. In this case,

The change in y is $42,000-12,000$ and the change in x is $7-3$.

Therefore, $\mathrm{m}=(42,000-12,000) /(7-3)=30,000 / 4=7,500$.

Next, we use one of the points $(3,12)$ to find the y-intercept (b).

We plug in the values of the point into the slope-intercept form of the equation, $\mathrm{y}=\mathrm{mx}+\mathrm{b}$, and solve for b .

So, we have $12,000=7,500(3)+b$, which gives us
$b=12,000-22,500=-10,500$.

Therefore, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is :
$B=7,500 t-10,500$.

This equation can be used to predict the balance for any given time in the future.

For example, if we want to know the balance after 5 years ($\mathrm{t}=5$), we simply plug in $t=5$ into the equation to get
$B=7,500(5)-10,500=32,500$.

Therefore, the balance after 5 years would be $\$ 32,500$.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

