

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

8
Q1.

Find the slope (m):
$m=$ change in $y /$ change in x
$=(32,000-8,000) /(6-2)=24,000 / 4=6,000$

Use one of the points (let's use $(2,8)$) to find the y-intercept (b):
$y=m x+b$
$8,000=6,000(2)+b$
$b=8,000-12,000=-4,000$

So, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:
$B=6,000 t-4,000$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 3 years $(t=3)$: $B=6,000(3)-4,000=14,000$

Therefore, the balance after 3 years would be $\$ 14,000$.

Q2.

To find the slope (m) of a savings account, we need to use the formula:
$\mathrm{m}=$ (change in y$) /$ (change in x).
In this case, we have the values of 40,000 and 10,000 for y, and 8 and 3 for
x. So, $m=(40,000-10,000) /(8-3)=30,000 / 5=6,000$.

Using one of the points on the graph (let's use $(3,10)$, we can find the y-intercept (b) of the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account. The equation is: $\mathrm{B}=\mathrm{mt}+\mathrm{b}$.

So, plugging in the values of m and the point $(3,10)$, we get:
$10,000=(6,000 \times 3)+b$

Solving for b , we get:
$b=10,000-18,000=-8,000$

Therefore, the equation that models the balance (B) is:
$B=6,000 t-8,000$

This equation can be used to predict the balance for any given time in the future.

For example, if you want to know the balance after 5 years ($\mathrm{t}=5$), you can plug in $t=5$:
$B=6,000(5)-8,000=22,000$

So, the balance after 5 years would be $\$ 22,000$.

Q3.
To find the slope (m) of the line, we use the formula:
$\mathrm{m}=$ change in $\mathrm{y} /$ change in x

We have been given the values for two points $(9000,4)$ and $(45000,9)$. We can use these values to find the slope of the line.
$m=(9-4) /(45000-9000)$
$\mathrm{m}=5 / 36000$
$\mathrm{m}=1 / 7200$

To find the y-intercept (b), we can use one of the given points, say (9000, 4), and substitute the values of m, x and y into the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$.
$4=(1 / 7200) * 9000+b$
$\mathrm{b}=4-(1 / 7200) * 9000$
b $=7 / 2$

Therefore, the equation of the line is:
$y=(1 / 7200) * x+7 / 2$

This equation can be used to find the value of y (which represents the number of accidents) for any given value of x (which represents the number of cars).

For example, if $x=20000$, then
$\mathrm{y}=(1 / 7200) * 20000+7 / 2$
$y=11 / 2$

This means that if there are 20000 cars on the road, we can expect around 5.5 accidents.

Q4.

To find the slope (m):
$\mathrm{m}=$ change in y / change in x
In this case, the values are:
$m=(60,000-20,000) /(5-00010)$

We don't know the value of 00010, but we do know that:
$m=40,000 / 5$

Simplifying this expression, we get:
$\mathrm{m}=8,000$

Next, we can find the y-intercept (b) using the point $(5,20)$:
$y=m x+b$
$20,000=8,000(5)+b$

Subtracting 40,000 from both sides, we get:
b $=-20,000$

So, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:
$B=8,000 t-20,000$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 7 years $(t=7)$:
$B=8,000(7)-20,000$

Simplifying this expression, we get:
B $=36,000$
Therefore, the balance after 7 years would be $\$ 36,000$.

Q5.
Find the slope (m):
$m=$ change in $y /$ change in x
$=85,000-25,00012-6 / 60,000 / 6$
= 10,000

Use one of the points (let's use $(6,25)$) to find the y-intercept (b)
$y=m x+b$
$25,000=10,000(6)+b$
$b=-35,000$

So, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:
$B=10,000 t-35,000$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 8 years $(\mathrm{t}=8)$:
$B=10,000(8)-35,000$
$=45,000$

Therefore, the balance after 8 years would be \$45,000.

Q6.
Given the values of change in B and change in t, we can find the slope (m) using the formula:
$m=$ change in $B /$ change in t. In this case, the values of change in B and change in t are 70,000 and 7, respectively.

Therefore, the slope is: $\mathrm{m}=70,000 / 7=10,000$.

Using one of the given points (7,30), we can find the y-intercept (b) using the formula:
$B=m t+b$. We substitute the values of m, t, and B from the point $(7,30)$ and solve for b . After simplification, we get: $\mathrm{b}=-40,000$.

Thus, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is: $B=10,000 t-40,000$.

This equation can be used to predict the balance for any given time in the future.

For example, if you want to know the balance after 10 years ($\mathrm{t}=10$), you can substitute the value of t in the equation and solve for B.

After solving, we get: $B=10,000(10)-40,000=60,000$.

Therefore, the balance after 10 years would be $\$ 60,000$.

Q7.
To find the slope (m) of a savings account balance over time, we can use the
Find the slope (m):
$m=$ change in $y /$ change in x
$=120,000-35,000-8$
= 85,000/8
$=10,625$

Use one of the points (let's use $(8,35)$) to find the y-intercept (b):
$y=m x+b$
$35,000=10,625(8)+b$
$35,000=85,000+b$
b $=35,000-85,000$
$b=-50,000$

So, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:

B = 10,625t - 50,000

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 12 years $(t=12)$:
$B=10,625(12)-50,000$
$=71,500$

Therefore, the balance after 12 years would be $\$ 71,500$.

Q8.

Find the slope (m):
$\mathrm{m}=$ change in y / change in x
$=(150,000-40,000-9) /(110,000 / 9) \approx 12,222.22$

Use one of the points, let's say (9, 40), to find the y-intercept (b):
$y=m x+b$
$40,000=12,222.22(9)+b$
$b=40,000-110,000 \approx-70,000$

Therefore, the equation that models the balance (B) in thousands of dollars over time (t in years) for this savings account is:
$B=12,222.22 t-70,000$

This equation can be used to predict the balance for any given time in the future. For example, if you want to know the balance after 15 years ($t=15$): $B=12,222.22(15)-70,000 \approx \$ 75,833.30$

Therefore, the balance after 15 years would be approximately $\$ 75,833.30$.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

 CHEMISTRY ONLINE TUITION- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

