

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board

EDEXCEL (A-LEVEL)

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

TOTAL MARKS

STRAIGHT LINE

SOLUTION - 6

8

42

Q1.

To determine if two lines are parallel, perpendicular or neither, we can compare their slopes.

The equation of line $l 1$ is given as $4 \mathrm{y}-3 \mathrm{x}=10$. To find the slope of $l 1$, we can rearrange the equation into slope-intercept form $(y=m x+b)$, where m is the slope:

$$
\begin{aligned}
& 4 y-3 x=10 \\
& 4 y=3 x+10 \\
& y=(3 / 4) x+10 / 4
\end{aligned}
$$

Thus, the slope of $l 1$ is $3 / 4$.
To find the slope of $l 2$ using the given points $(5,-1)$ and $(-1,8)$, we can use the slope formula:

$$
m=(y 2-y 1) /(x 2-x 1)
$$

For $l 2$:

$$
\begin{aligned}
& \mathrm{m}=(8-(-1)) /(-1-5) \\
& \mathrm{m}=9 /(-6) \\
& \mathrm{m}=-3 / 2
\end{aligned}
$$

Now, we can compare the slopes:
If the slopes are equal, the lines are parallel.
If the slopes are negative reciprocals, the lines are perpendicular.
In this case, the slopes of $l 1$ and $l 2$ are not equal, nor are they negative reciprocals of each other. Therefore, lines $l 1$ and $l 2$ are neither parallel nor perpendicular.

Q2.
Consider two lines, $l 3$ and $l 4$, and determine whether they are parallel, perpendicular, or neither.

Line $l 3$:

The equation of $l 3$ is $2 \mathrm{y}+5 \mathrm{x}=8$. Rewrite it in slope-intercept form:

$$
\begin{aligned}
& 2 y=-5 x+8 \\
& y=-5 / 2 x+4
\end{aligned}
$$

So, the slope of $l 3$ is $-5 / 2$.
Line 14
The points $\mathrm{A}(3,-2)$ and $\mathrm{B}(1,6)$ lie on $l 4$. The slope of $l 4$ can be calculated as follows:

$$
\begin{aligned}
& \mathrm{m}=(\mathrm{y} 2-\mathrm{y} 1) /(\mathrm{x} 2-\mathrm{x} 1) \\
& \mathrm{m}=(6-(-2)) /(1-3) \\
& \mathrm{m}=8 /-2 \\
& \mathrm{~m}=-4
\end{aligned}
$$

Comparison:
Now, compare the slopes:
If the slopes are equal, the lines are parallel.
If the slopes are negative reciprocals of each other, the lines are perpendicular.

In this case, $-5 / 2$ (slope of 31) and -4 (slope of $l 4$) are not equal, and they are not negative reciprocals of each other. Therefore, lines 31 and 41 are neither parallel nor perpendicular.

Q3.

Consider two lines, 51 and 6 l , and determine whether they are parallel, perpendicular, or neither.

Line 51:

The equation of $5 l$ is $3 x+2 y=6$. To rewrite it in slope-intercept form, we solve for y :

$$
\begin{aligned}
& 3 x+2 y=6 \\
& 2 y=-3 x+6 \\
& y=-3 / 2 x+3
\end{aligned}
$$

Thus, the slope of 51 is $-3 / 2$.

Line 61:

The points $(2,4)$ and $(5,-1)$ lie on 6 . The slope of 61 can be calculated as follows:

$$
\begin{aligned}
& \mathrm{m}=(\mathrm{y} 2-\mathrm{y} 1) /(\mathrm{x} 2-\mathrm{x} 1) \\
& \mathrm{m}=(-1-4) /(5-2) \\
& \mathrm{m}=-5 / 3
\end{aligned}
$$

Comparison:
If the slopes are equal, the lines are parallel. If the slopes are negative reciprocals of each other, the lines are perpendicular.
In this case, the slope of 51 is $-3 / 2$ and the slope of 61 is $-5 / 3$. These slopes are not equal and they are not negative reciprocals of each other. Therefore, lines $5 l$ and 61 are neither parallel nor perpendicular.

Q4.

Consider two lines, line $l 7$ and line $l 8$, and determine whether they are parallel, perpendicular, or neither.
Line 18 :
The equation of line $l 7$ is $\mathrm{y}=2 \mathrm{x}+3$. This equation is already in slopeintercept form, where the slope (m) is 2.
Line 18 :

The points $(-1,1)$ and $(3,7)$ lie on line $l 8$. The slope of line $l 8$ can be calculated as follows:

$$
\begin{aligned}
& \mathrm{m}=(\mathrm{y} 2-\mathrm{y} 1) /(\mathrm{x} 2-\mathrm{x} 1) \\
& \mathrm{m}=(7-1) /(3-(-1)) \\
& \mathrm{m}=6 / 4 \\
& \mathrm{~m}=3 / 2
\end{aligned}
$$

Comparison:
Now, compare the slopes:
If the slopes are equal, the lines are parallel.
If the slopes are negative reciprocals of each other, the lines are perpendicular.

In this case, the slope of line $l 7$ is 2 and the slope of line $l 8$ is $3 / 2$. They are not equal, and they are not negative reciprocals of each other. Therefore, lines $l 7$ and $l 8$ are neither parallel nor perpendicular.

Q5.
Consider two lines, $l 9$ and $l 10$, and determine whether they are parallel, perpendicular, or neither.

Line 19 :
The equation of $l 9$ is $2 \mathrm{x}-5 \mathrm{y}=3$. Rewrite it in slope-intercept form:

$$
\begin{aligned}
& 2 x-5 y=3 \\
& -5 y=-2 x+3 \\
& y=25 x-53
\end{aligned}
$$

So, the slope of $l 9$ is $25 / 52$.
Line $l 10$:

The points $(4,-1)$ and $(1,6)$ lie on $l 10$. The slope of $l 10$ can be calculated as follows:

$$
\begin{aligned}
& \mathrm{m}=(\mathrm{y} 2-\mathrm{y} 1) /(\mathrm{x} 2-\mathrm{x} 1) \\
& \mathrm{m}=(6-(-1)) /(1-4)=-7 / 3
\end{aligned}
$$

Comparison:

Now, compare the slopes:
If the slopes are equal, the lines are parallel.
If the slopes are negative reciprocals of each other, the lines are perpendicular.

In this case, 25/52 (slope of 91) and -7/3 (slope of $l 10$) are not equal, and they are not negative reciprocals of each other. Therefore, lines $l 9$ and $l 10$ are neither parallel nor perpendicular.

Q6.

(a)

To find the value of ' m ' for which line ' 1 ' and line '2' are perpendicular, we can use the fact that the product of the slopes of two perpendicular lines is 1.

The equation of line ' 1 ' is given as $2 x+4 y-3=0$, and the equation of line 'l2' is $\mathrm{y}=\mathrm{mx}+7$.

Let's compare the slopes of line ' 1 ' and line ' 2 ':
For 'l1', we rearrange the equation to get it in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, where ' m ' is the slope:

$$
\begin{aligned}
& 2 x+4 y-3=0 \\
& 4 y=-2 x+3
\end{aligned}
$$

$$
y=-1 / 2 x+3 / 4
$$

Now, we compare this with the equation for ' 12 ', $\mathrm{y}=\mathrm{mx}+7$. We get the slope of line ' 1 ' as $-1 / 2$, so for line ' 2 ', the pitch ' m ' must be the negative reciprocal of $-1 / 2$, which is 2 .

So, $m=2$.
(b)
we find the point of intersection 'P' by solving the system of equations formed by line ' 1 ' and line ' 2 ':

$$
\begin{aligned}
& 2 x+4 y-3=0 \\
& y=2 x+7
\end{aligned}
$$

We substitute the expression for 'y' from the second equation into the first:

$$
2 x+4(2 x+7)-3=0
$$

Now, we solve for ' x ':

$$
\begin{aligned}
& 2 x+8 x+28-3=0 \\
& 10 x+25=0 \\
& 10 x=-25 \\
& x=-5 / 2
\end{aligned}
$$

So, the x-coordinate of point ' P ' is $-5 / 2$.

Q7.

To calculate the slope (m), we use the formula:

$$
m=(y 2-y 1) /(x 2-x 1)
$$

For the two given points, $C(2,5)$ and $D(6,-1)$, we can substitute the values to get:

$$
m=(-1-5) /(6-2)=-6 / 4=-3 / 2
$$

Next, we use point-slope form to derive the equation of the line.
Let's use point C $(2,5)$ for this:

$$
(y-y 1)=m(x-x 1)
$$

Substituting the values, we get:

$$
(y-5)=(-3 / 2)(x-2)
$$

Simplifying the equation:

$$
\begin{aligned}
& 2 y-10=-3 x+6 \\
& 3 x+2 y=16
\end{aligned}
$$

Therefore, the equation of the line passing through points

$$
\mathrm{C}(2,5) \text { and } \mathrm{D}(6,-1) \text { is } 3 \mathrm{x}+2 \mathrm{y}=16
$$

Q8.

To find the slope (m), we use the formula:
m = (y2-y1) / (x2-x1)

Substituting the values of the given points $\mathrm{I}(1,4)$ and $\mathrm{J}(2,6)$, we get:

$$
m=(6-4) /(2-1)=2
$$

Using point-slope form with point $\mathrm{I}(1,4)$, we get:

$$
(y-y 1)=m(x-x 1)
$$

Substituting the value of m and the coordinates of point $I(1,4)$, we get:

$$
(y-4)=2(x-1)
$$

Simplifying further, we get:

$$
y=2 x+2
$$

Therefore, the equation of the line passing through points $\mathrm{I}(1,4)$ and $\mathrm{J}(2,6)$ is

$$
\mathrm{y}=2 \mathrm{x}+2
$$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

