

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board

TOPIC:

PAPER TYPE:38
1.

Range of f :
To find the range of $f(\mathrm{x})$, we can complete the square on the quadratic expression:

$$
\begin{aligned}
f(x) & =x^{2}+2 x+1 \\
& =(x+1)^{2}
\end{aligned}
$$

The square of any real number is non - negative, so $(x+1) 2$ is always greater than or equal to zero. Therefore, the range of $f(\mathrm{x})$ is all non - negative real numbers:

$$
\text { Range of } f=\{y \in \mathbb{R} \mid y \geq 0\}
$$

Inverse Function $f^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $f^{-1}(\mathrm{x})$, interchange x and y in the equation $f(\mathrm{x})=(\mathrm{x}+1)^{2}$ and solve for y :

Taking the square root of both sides:

$$
\sqrt{x}=y=1
$$

Solving for y :

$$
y=\sqrt{x}-1
$$

So, the inverse function $f^{-1}(\mathrm{x})$ is given by $f^{-1}(\mathrm{x})=\sqrt{x}-1$.
Now, let's consider the domain of $f^{-1}(x)$. The square root is defined only for non negative real numbers, so \sqrt{x} is defined when $\mathrm{x} \geq 0$. Also, subtracting 1 does not affect this domain restriction. Therefore, the domain of $f^{-1}(\mathrm{x})$ is $\mathrm{x} \geq 0$. In summary:
$f^{-1}(x)=\sqrt{x}-1$
Domain of $f^{-1}(\mathrm{x}): \mathrm{x} \geq 0$
2.

Range of g :
The range of $g(x)$ can be determined by analyzing the linear expression $3 x-4$. Since the coefficient of x is positive, the function is increasing.

Also,
There are no restrictions on x other than $x \geq 2$. Therefore, the range of $g(x)$ is all numbers for $\mathrm{x} \geq 2$:

Inverse Function $\mathrm{g}^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $\mathrm{g}^{-1}(\mathrm{x})$, interchange x and y in the equation $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-4$ and solve for y :

$$
x=3 y-4
$$

Solve for y :

$$
y=\frac{x+4}{3}
$$

So, the inverse function $\mathrm{g}^{-1}(\mathrm{x})$ is given by $\mathrm{g}^{-1}(\mathrm{x})==\frac{x+4}{3}$ is defined for all real numbers. Therefore, the domain of $\mathrm{g}^{-1}(\mathrm{x})$ is \mathbb{R}.

In summary:

$$
\mathrm{g}^{-1}(\mathrm{x})=\frac{x+4}{3}
$$

Domain of $\mathrm{g}^{-1}(\mathrm{x}): \mathbb{R}$

Range of h:
The function $\mathrm{h}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ is the exponential function, and its range is all positive real numbers

Range of $\mathrm{h}=\{y \in \mathbb{R} \mid y>0\}$
Inverse Function $\mathrm{h}-1(\mathrm{x})$ and its Domain:
To find the inverse function $h^{-1}(x)$, interchange x and y in the equation $h(x)=e^{x}$ and solve for y :

$$
\mathrm{x}=\mathrm{e}^{\mathrm{y}}
$$

Taking the natural logarithm of both sides:

$$
\operatorname{In}(x)=y
$$

So, the inverse function $h^{-1}(x)$ is given by $h^{-1}(x)=\operatorname{In}(x)$.
Now, let's consider the domain of $h^{-1}(x)$. The natural logarithm is defined only for positive real numbers, so the domain of $\mathrm{h}^{-1}(\mathrm{x})$ is $\mathrm{x}>0$.
In summary

$$
\mathrm{h}^{-1}(\mathrm{x})=\operatorname{In}(\mathrm{x})
$$

Domain of ${ }^{h-1}(x): x>0$

Range of p :

To find the range of $\mathrm{p}(\mathrm{x})$, we can complete the square on the quadratic expression:

$$
\begin{aligned}
& p(x)=x^{2}-4 x+3 \\
& =(x-2)^{2}-1
\end{aligned}
$$

The square of any real number is non - negative, so ($x-2$)2 is always greater than or equal to zero. Therefore, the range of $p(x)$ is all real numbers except when $(x-2) 2=$ 0 , which occurs when $\mathrm{x}=2$. So, the range of p is all real numbers except -1 :
Range of $\mathrm{p}=\{y \in \mathbb{R} \mid y \neq-1\}$
Inverse Function $\mathrm{p}^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $\mathrm{p}^{-1}(\mathrm{x})$, interchange x and y in the equation

$$
\mathrm{p}(\mathrm{x})=(\mathrm{x}-2)^{2}-1
$$

and solve for y :

$$
x=(y-2)^{2}-1
$$

Adding 1 to both sides:

$$
x+1=(y-2)^{2}
$$

Taking the square root of both sides:

$$
\sqrt{x+1} y-2
$$

Solve for y :

$$
Y=\sqrt{x+1}+2
$$

So, the inverse function $\mathrm{p}-1(\mathrm{x})$ is given by $\mathrm{p}-1(\mathrm{x})=\sqrt{x+1}+2$.
Now, let's consider the domain of $\mathrm{p}-1(\mathrm{x})$. The square root is defined only for non negative real numbers, so $\sqrt{x+1}$ is defined when $\mathrm{x}+1 \geq 0$.
Therefore, the domain of $\mathrm{p}-1(\mathrm{x})$ is $\mathrm{x} \geq-1$.
In summary:

$$
\mathrm{p}-1(\mathrm{x})=\sqrt{x+1}+2
$$

Domain of $\mathrm{p}-1(\mathrm{x}): \mathrm{x} \geq-1$

Range of r :

The logarithmic function $\log 2(x+4)$ is defined for $x>-4$. The range of $r(x)$ will be all real numbers because the logarithm is defined for positive real numbers.

$$
\text { Range of } \mathrm{r}=\{y \in \mathbb{R}\}
$$

Inverse Function $r^{-1}(x)$ and its Domain:
To find the inverse function $\mathrm{x}^{-1}(\mathrm{x})$, interchange x and y in the equation

$$
\mathrm{r}(\mathrm{x})=\log _{2}(\mathrm{x}+4)
$$

and solve for y :

$$
x=\log _{2}(y+4)
$$

rewrite in exponential form:

$$
2^{x}=y+4
$$

Solve for y :

$$
Y=2^{x}-4
$$

So, the inverse function $r^{-1}(x)$ is given by $r^{-1}(x)=2^{x}-4$.
Now, let's consider the domain of $\mathrm{r}-1(\mathrm{x})$. The exponential function 2^{x} is defined for all real numbers, and subtracting 4 does not impose any additional restrictions.

Therefore, the domain of $r^{-1}(x)$ is \mathbb{R}.

6.

Range of t :
The cubic function $t(x)=x^{3}+2 x^{2}-x-3$ is defined for all real numbers. To find the range, we can analyze its behavior. The leading term is x^{3}, which means the function increases without bound as x approaches positive or negative infinity. Therefore, the range of $\mathrm{t}(\mathrm{x})$ is all real numbers:

Range of $\mathrm{t}=\{y \in \mathbb{R}\}$

Inverse Function $\mathrm{t}^{-1}(\mathrm{x})$ and its Domain:
Finding the inverse function for a cubic function can be challenging due to its non one - to - one nature. Cubic functions are not always invertible, and in this case, we may not be able to find a simple algebraic expression for $\mathrm{t}^{-1}(\mathrm{x})$.
in cases where the inverse function is not easily expressed algebraically, it may be represented graphically or numerically.
If we attempt to find the inverse function, we swap x and y and try to solve for y :

$$
x=y^{3}+2 y^{2}-y-3
$$

However, solving this cubic equation for y is generally complex may involve numerical method.

However, solving this cubic equation for y is generally complex and may involve numerical method.

So, for this example, we may not provide a simple algebraic expression for the inverse function. The focus would be on the cubic function itself and its behavior. In summary:

$$
\text { Range of } \mathrm{t}=\{y \in \mathbb{R}\}
$$

The inverse function $\mathrm{t}^{-1}(\mathrm{x})$ may not have a simple algebraic expression.

7.

Range of f :

The function $v(\mathrm{x})=\log _{3}(|x|+2)$ involves a logarithm with a base of 3 .
The argument of the logarithm is $|x|+2$, and $|x|+2$ is always greater than or equal to 2 .

The logarithm is defined for positive arguments, so the minimum value of $f(\mathrm{x})$ is $\log _{3}(2)$,
which is greater than O . therefore, the range of $f(\mathrm{x})$ is all real numbers, excluding negative values.
so, the range of f is $\{y \in \mathbb{R} \mid y>0\}$

Range of g :

The function $g(x)=\frac{1}{x-1}$ is defined for all real numbers except $x-1$. As x approaches 1 from the left $\left(\mathrm{x} \rightarrow 1^{-}\right), \mathrm{g}(\mathrm{x})$ goes to negative infinity, and as x approaches 1 from the right $\left(x \rightarrow 1^{-}\right), g(x)$ goes to positive infinity. Therefore, the range of $g(x)$ is all real numbers, excluding O.
So, the range of g is $\{y \in \mathbb{R} \mid y \neq 0\}$
Inverse Function $\mathrm{g}-1(\mathrm{x})$ and its Domain:
To find the inverse function $g-1(x)$, interchange x and y in the equation $g(x)-\frac{1}{x-1}$ for y :

$$
\mathrm{x}=\frac{1}{x-1}
$$

solving for y :

$$
y=\frac{1}{x}+1
$$

so the inverse function $\mathrm{g}^{-1}(\mathrm{x})$ is given by

$$
\mathrm{g}^{-1}(\mathrm{x})=\frac{1}{x}+1
$$

Now, let's consider the domain of $g-1(x)$. The inverse function is defined for all real numbers except $x-0$ (since division by zero is undefined).

In summary:
$\mathrm{g}^{-1}(\mathrm{x})=\frac{1}{x}+1$
Domain of $\mathrm{g}^{-1}(\mathrm{x}): \mathbb{R}$, exchanging $\mathrm{x}-0$

M.B.B.S / MS. CHEMISTRY

Phone: +442081445350 www.chemistryonlinetuition.com Email: asherrana@chemistryonl inetuition.com

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

