

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

TOTAL MARKS
38 individual/ company/organization involved in copyright abuse.

Range of h :

The function $h(x)=2^{x-1}$ is an exponential function with a base of 2 . As x varies over all real numbers, the exponential function $h(x)$ takes on all positive values. So, the range of h is $\{y \in \mathbb{R} \mid y>0\}$.

Inverse Function h-1(x) and its Domain:

To find the inverse function $h-1(x)$, interchange x and y in the equation $h(x)-2^{x-1}$ and solve for y :
$x=2^{y-1}$
Taking the logarithm base 2 of both sides:
$\log _{2}(x)=y-1$
Solving for y :
$y=\log _{2}(x)+1$
So, the inverse function $h^{-1}(x)$ is given by:
$h-1(x)=\log _{2}(x)+1$
Now, let's consider the domain of $h^{-1}(x)$. The logarithmic function is defined only for positive real numbers, so the domain of $h^{-1}(x)$ is $\{x \in \mathbb{R} \mid x>0\}$.

In summary:
$h^{-1}(x)=\log _{2}(x)+1$
Domain of $\mathrm{h}^{-1}(\mathrm{x}):\{x \in \mathbb{R} \mid x>0\}$.
2)

Range of p :

The quadratic function $p(x)=(x-3) 2+4$ has its veretex at $(3,1)$, , and the square term $(x-3) 2$ is always non - negative. Therefore, the minimum value of $p(x)$ is 4 , and as x varies over all real numbers, $p(x)$ takes on all values greater than or equal to 4 . So, the range of p is
$\{x \in \mathbb{R} \mid x \geq 4\}$.
Inverse Function $\mathrm{p}^{-1}(\mathrm{x})$ and its Domain:

To find the inverse function $p^{-1}(x)$, interchange x and y in the equation $p(x)$ $=(x-3)^{2}+4$
and solve for y :

$$
y= \pm \sqrt{x-4}+3
$$

Since $p(x)$ is an upward - opening parabola, only the positive square root is considered to keep it as a function. So, the inverse function $p^{-1}(x)$ is given by:
$p^{-1}(x)=\sqrt{x-4}+3$
Now, let's consider the domain or $\mathrm{p}-1(\mathrm{x})$. The square root function is defined only for non - negative real numbers, so the domain of $\mathrm{p}^{-1}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x \geq 4\}$.

In summary:
$p^{-1}(x)=\sqrt{x-4}+3$
Domain of $\mathrm{p}^{-1}(\mathrm{x}):\{x \in \mathbb{R} \mid x \geq 4\}$

Range of m :

The cubic function $m(x)=x 3-4 x$ is defined for all real numbers. To find the range, we can analyze its behavior. The leading term is $x 3$, which means the function increases without bound as x approaches positive or negative infinity. Therefore, the range of $m(x)$ is all real numbers: Range of $m=\{y \in \mathbb{R}\}$

Inverse Function $\mathbf{m}^{-1}(\mathbf{x})$ and its Domain:

Finding the inverse function for a cubic function can be challenging due to its non one - to - one nature. Cubic functions are not always invertible, and in this case, we may not able to find a simple algebraic expression for $\mathrm{m}^{-1}(\mathrm{x})$.

In case where the inverse functions is not easily expressed algebraically, it may be represented graphically or numerically.

If we attempt to find the inverse function, we swap x and y and try to solve for y :
$x=y^{3}-4 y$
However, solving this cubic equation for y is generally complex and may involve numerical methods.

So, for this example, we may not provide a simple algebraic expression for the inverse function. The focus would be on the cubic function itself and its behavior.

In summary:
Range of $m=\{y \in \mathbb{R}\}$
The inverse function $\mathrm{m}-1(\mathrm{x})$ may not have a simple algebraic expression.

4)

Range of n :

The function $\mathrm{n}(\mathrm{x})=\frac{2 x}{x-4}$ is a rational function. As x approaches 4, the denominator $(x-4)$ approaches 0 , leading to an undefined value. Therefore, the function has a vertical asymptote at $x=4$. Apart from that, the function can take any real value. So, the range of $\mathrm{n}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x \neq 0\}$ since the function is undefined when $\mathrm{x}=4$.

Inverse Function $\mathbf{n}^{-1}(\mathbf{x})$ and its Domain:

To find the inverse function $n-1(x)$. interchange x and y in the equation $n(x)=\frac{2 x}{x-4}$ and solve for y :
$(x)=\frac{2 x}{x-4}$
Now, solving for y :
$y=\frac{4 x}{x-2}$
So, the inverse function $n^{-1}(x)$ is given by:
$n-1(x)=\frac{4 x}{x-2}$
So, the inverse function $\mathrm{n}^{-1}(\mathrm{x})$ is given by:
$\mathrm{n}^{-1}(\mathrm{x})=\frac{4 x}{x-2}$
Now, let's consider the domain of $n^{-1}(x)$. The inverse function is defined for all real numbers except where the original function is undefined. Since $n(x)$ undefined at $x=$ 4 , the domain of $n^{-1}(x)$ is \mathbb{R}, excluding $x=-2$ (where the denominator $(x+2)$ is equal to 0).

In summary:
$\mathrm{n}-1(\mathrm{x})=\frac{4 x}{x-2}$
Domain of $n-1(x): \mathbb{R}$, excluding $x=-2$.

5)

Ranger of p :

The function $p(x)=\sqrt{x+3}$ is a square root function with a shift of 3 unit to the left. The square root a defined only for non - negative values, and the shift ensures that the function is always, defined for $x \geq-3$. As x varies over all real numbers greater than or equal to -3 , the expression $\sqrt{x+3}$ covers all non - negative real numbers.

So, the range of $p(x)$ is $\{y \in \mathbb{R} \mid y \geq 0\}$.

Inverse Function $\mathbf{p - 1 (x)}$ and its Domain:

To find the inverse function $\mathrm{p}^{-1}(\mathrm{x})$, interchange x and y in the equation $\mathrm{p}(\mathrm{x})=\sqrt{x+3}$ and solve for y :
$\mathrm{x}=\sqrt{y+3}$
Squaring both sides:
$x^{2}=y+3$
Solving for y :
$y=x^{2}-3$
So, the inverse function $p^{-1}(x)$ is given by:
$p^{-1}(x)=x^{2}-3$
Now, let's consider the domain of $p-1(x)$. The inverse function is defined for all real numbers, so the domain of $p^{-1}(x)$ is \mathbb{R}.

In summary:
$p^{-1}(x)=x^{2}-3$
Domain of $p^{-1}(x): \mathbb{R}$

6)

Range of y :

The function $\mathrm{q}(\mathrm{x})=2^{\mathrm{x}}$ is an exponential function with a base of 2 . As x varies over all real numbers, the expression 2^{x} covers all positive real numbers.

So, the range of $\mathrm{q}(\mathrm{x})$ is $\{y \in \mathbb{R} \mid y>0\}$.

Inverse Function $\mathbf{q}^{-1}(\mathbf{x})$ and its Domain:

To find the Inverse Function $q^{-1}(x)$, interchange x and y in the equation $q(x)=2 x$ and solve for y :
$x=2^{y}$
Taking the logarithm base 2 of both sides:
$\log _{2}(x)=y$
So, the inverse function $y^{-1}(x)$ is given by:
$q^{-1}(x)=\log _{2}(x)$
Now, let's consider the domain of $y-1(x)$. The logarithmic function only for positive real numbers, so the domain of $\mathrm{q}^{-1}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x>0\}$.

In summary:
$q^{-1}(x)=\log _{2}(x)$
Domain of $q^{-1}(x):\{x \in \mathbb{R} \mid x>0\}$.
7)

Range of r :

The function $r(x)=(x-1)^{3}$ is a cubic function. As x varies over all real numbers, the expression $(x-1) 3$ can take on all real values.

So, the range of $r(x)$ is $\{y \in \mathbb{R}\}$.

Inverse Function $\mathrm{r}-1(\mathrm{x})$ and its Domain:

To find the inverse function $r^{-1}(x)$, interchange x and y In the equation $r(x)=(x-1)^{3}$ and solve for y :
$x=(y-1)^{3}$
Taking the cube root of both sides:
$y-1=\sqrt[3]{x}$
Solving for y :
$y=\sqrt[3]{x}+1$

So, the inverse function $r^{-1}(x)$ is given by:
$r^{-1}(x)=\sqrt[3]{x}+1$
Now, let's consider the domain of $r^{-1}(x)$. The cube root function is defied for all real numbers. So, the domain of $r^{-1}(x)$ is \mathbb{R}.

In summary:
$r^{-1}(x)=\sqrt[3]{x}+1$
Domain of $\mathrm{r}-1(\mathrm{x}): \mathbb{R}$
8)

Range of s :

The function $\mathrm{s}(\mathrm{x})=-\lceil r+2\rceil$ is an absolute value function with a reflection, and the negative sign ensures that the output is always negative. As x varies over all real numbers, the expression $=-\lceil r+2\rceil$ covers all real numbers but is always negative.

So, the range of $s(x)$ is $\{x \in \mathbb{R} \mid x<0\}$.

Inverse Function $\mathrm{s}^{-1}(\mathrm{x})$ and its Domain:

To find the inverse function $s^{-1}(x)$, interchange x and y in the equation
$\mathrm{s}(\mathrm{x})=-\lceil r+2\rceil$ and solve for y :
$\mathrm{x}=-\lceil r+2\rceil$

Dividing both sides by -1 to isolate the absolute value:
$-\mathbf{x}=\lceil r+2\rceil$

Now, consider two cases:

1. $x \geq 0:-x=y+2$, so $y=-x-2$.
2. $x<0$: $-x=-(y+2)$, so $y=-x-2$.

So, the inverse function $\mathrm{s}^{-1}(x)$ is given by:

$$
s^{-1}(x)=-x-2
$$

Now, let's consider the domain of $s^{-1}(x)$. The inverse function is defined for all real numbers, so the domain of $s^{-1}(x)$ is \mathbb{R}.
in summary:
$s^{-1}(x)=-x-2$
Domain of $x^{-1}(x): \mathbb{R}$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

