

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com
Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

TOTAL MARKS38

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.
1.

Range of f :
To find the range of $f(\mathrm{x})$, we can complete the square on the quadratic expression:

$$
\begin{aligned}
f(x) & =x^{2}+2 x+1 \\
& =(x+1)^{2}
\end{aligned}
$$

The square of any real number is non - negative, so $(x+1) 2$ is always greater than or equal to zero. Therefore, the range of $f(\mathrm{x})$ is all non - negative real numbers:

$$
\text { Range of } f=\{y \in \mathbb{R} \mid y \geq 0\}
$$

Inverse Function $f^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $f^{-1}(\mathrm{x})$, interchange x and y in the equation $f(\mathrm{x})=(\mathrm{x}+1)^{2}$ and solve for y :

Taking the square root of both sides:

$$
\sqrt{x}=y=1
$$

Solving for y :

$$
y=\sqrt{x}-1
$$

So, the inverse function $f^{-1}(\mathrm{x})$ is given by $f^{-1}(\mathrm{x})=\sqrt{x}-1$.
Now, let's consider the domain of $f^{-1}(\mathrm{x})$. The square root is defined only for non negative real numbers, so \sqrt{x} is defined when $\mathrm{x} \geq 0$. Also, subtracting 1 does not affect this domain restriction. Therefore, the domain of $f^{-1}(\mathrm{x})$ is $\mathrm{x} \geq 0$. In summary:
$f^{-1}(x)=\sqrt{x}-1$
Domain of $f^{-1}(\mathrm{x}): \mathrm{x} \geq 0$
2.

Range of g :
The range of $g(x)$ can be determined by analyzing the linear expression $3 x-4$. Since the coefficient of x is positive, the function is increasing.

Also,
There are no restrictions on x other than $x \geq 2$. Therefore, the range of $g(x)$ is all numbers for $\mathrm{x} \geq 2$:

Inverse Function $\mathrm{g}^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $\mathrm{g}^{-1}(\mathrm{x})$, interchange x and y in the equation $\mathrm{g}(\mathrm{x})=3 \mathrm{x}-4$ and solve for y :

$$
x=3 y-4
$$

Solve for y :

$$
y=\frac{x+4}{3}
$$

So, the inverse function $\mathrm{g}^{-1}(\mathrm{x})$ is given by $\mathrm{g}^{-1}(\mathrm{x})==\frac{x+4}{3}$ is defined for all real numbers. Therefore, the domain of $\mathrm{g}^{-1}(\mathrm{x})$ is \mathbb{R}.

In summary:

$$
\mathrm{g}^{-1}(\mathrm{x})=\frac{x+4}{3}
$$

Domain of $\mathrm{g}^{-1}(\mathrm{x}): \mathbb{R}$

3)

Range of h :
The function $\mathrm{h}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ is the exponential function, and its range is all positive real numbers

Range of $\mathrm{h}=\{y \in \mathbb{R} \mid y>0\}$
Inverse Function $\mathrm{h}-1(\mathrm{x})$ and its Domain:
To find the inverse function $h^{-1}(x)$, interchange x and y in the equation $\mathrm{h}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ and solve for y :

$$
\mathrm{x}=\mathrm{e}^{\mathrm{y}}
$$

Taking the natural logarithm of both sides:

$$
\operatorname{In}(x)=y
$$

So, the inverse function $h^{-1}(x)$ is given by $h^{-1}(x)=\operatorname{In}(x)$.
Now, let's consider the domain of $h^{-1}(x)$. The natural logarithm is defined only for positive real numbers, so the domain of $\mathrm{h}^{-1}(\mathrm{x})$ is $\mathrm{x}>0$.
In summary

$$
\mathrm{h}^{-1}(\mathrm{x})=\operatorname{In}(\mathrm{x})
$$

Domain of ${ }^{h-1}(x): x>0$

Range of p :

To find the range of $\mathrm{p}(\mathrm{x})$, we can complete the square on the quadratic expression:

$$
\begin{aligned}
& p(x)=x^{2}-4 x+3 \\
& =(x-2)^{2}-1
\end{aligned}
$$

The square of any real number is non - negative, so ($x-2$)2 is always greater than or equal to zero. Therefore, the range of $p(x)$ is all real numbers except when $(x-2) 2=$ 0 , which occurs when $\mathrm{x}=2$. So, the range of p is all real numbers except -1 :
Range of $\mathrm{p}=\{y \in \mathbb{R} \mid y \neq-1\}$
Inverse Function $\mathrm{p}^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $\mathrm{p}^{-1}(\mathrm{x})$, interchange x and y in the equation

$$
\mathrm{p}(\mathrm{x})=(\mathrm{x}-2)^{2}-1
$$

and solve for y :

$$
x=(y-2)^{2}-1
$$

Adding 1 to both sides:

$$
x+1=(y-2)^{2}
$$

Taking the square root of both sides:

$$
\sqrt{x+1} y-2
$$

Solve for y :

$$
Y=\sqrt{x+1}+2
$$

So, the inverse function $\mathrm{p}-1(\mathrm{x})$ is given by $\mathrm{p}-1(\mathrm{x})=\sqrt{x+1}+2$.
Now, let's consider the domain of $\mathrm{p}-1(\mathrm{x})$. The square root is defined only for non negative real numbers, so $\sqrt{x+1}$ is defined when $\mathrm{x}+1 \geq 0$.
Therefore, the domain of $\mathrm{p}-1(\mathrm{x})$ is $\mathrm{x} \geq-1$.
In summary:

$$
\mathrm{p}-1(\mathrm{x})=\sqrt{x+1}+2
$$

Domain of $\mathrm{p}-1(\mathrm{x}): \mathrm{x} \geq-1$

Ranger of p:

The function $\mathrm{p}(\mathrm{x})=\sqrt{x+3}$ is a square root function with a shift of 3 unit to the left. The square root a defined only for non - negative values, and the shift ensures that the function is always, defined for $x \geq-3$. As x varies over all real numbers greater than or equal to -3 , the expression $\sqrt{x+3}$ covers all non - negative real numbers.

So, the range of $\mathrm{p}(\mathrm{x})$ is $\{y \in \mathbb{R} \mid y \geq 0\}$.

Inverse Function p-1(x) and its Domain:

To find the inverse function $\mathrm{p}^{-1}(\mathrm{x})$, interchange x and y in the equation $\mathrm{p}(\mathrm{x})=\sqrt{x+3}$ and solve for y :
$x=\sqrt{y+3}$
Squaring both sides:
$x^{2}=y+3$
Solving for y :
$y=x^{2}-3$
So, the inverse function $\mathrm{p}^{-1}(\mathrm{x})$ is given by:
$\mathrm{p}^{-1}(\mathrm{x})=\mathrm{x}^{2}-3$
Now, let's consider the domain of $\mathrm{p}-1(\mathrm{x})$. The inverse function is defined for all real numbers, so the domain of $\mathrm{p}^{-1}(\mathrm{x})$ is \mathbb{R}.

In summary:
$\mathrm{p}^{-1}(\mathrm{x})=\mathrm{x}^{2}-3$
Domain of $\mathrm{p}^{-1}(\mathrm{x}): \mathbb{R}$
6)

Range of y :

The function $\mathrm{q}(\mathrm{x})=2^{\mathrm{x}}$ is an exponential function with a base of 2 . As x varies over all real numbers, the expression 2^{x} covers all positive real numbers.

So, the range of $\mathrm{q}(\mathrm{x})$ is $\{y \in \mathbb{R} \mid y>0\}$.

Inverse Function $q^{-1}(x)$ and its Domain:

To find the Inverse Function $\mathrm{q}^{-1}(\mathrm{x})$, interchange x and y in the equation $\mathrm{q}(\mathrm{x})=2 \mathrm{x}$ and solve for y :
$\mathrm{x}=2^{\mathrm{y}}$
Taking the logarithm base 2 of both sides:
$\log _{2}(\mathrm{x})=\mathrm{y}$
So, the inverse function $y^{-1}(x)$ is given by:
$\mathrm{q}^{-1}(\mathrm{x})=\log _{2}(\mathrm{x})$
Now, let's consider the domain of $y-1(x)$. The logarithmic function only for positive real numbers, so the domain of $\mathrm{q}^{-1}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x>0\}$.
In summary:
$\mathrm{q}^{-1}(\mathrm{x})=\log _{2}(\mathrm{x})$
Domain of $q^{-1}(x): \quad\{x \in \mathbb{R} \mid x>0\}$.

7)

Range of r :

The function $r(x)=(x-1)^{3}$ is a cubic function. As x varies over all real numbers, the expression $(x-1) 3$ can take on all real values.

So, the range of $r(x)$ is $\{y \in \mathbb{R}\}$.

Inverse Function r-1(x) and its Domain:

To find the inverse function $r^{-1}(x)$, interchange x and y In the equation $r(x)=(x-1)^{3}$ and solve for y :
$x=(y-1)^{3}$
Taking the cube root of both sides:
$\mathrm{y}-1=\sqrt[3]{x}$
Solving for y :
$y=\sqrt[3]{x}+1$

So, the inverse function $r^{-1}(x)$ is given by:
$\mathrm{r}^{-1}(\mathrm{x})=\sqrt[3]{x}+1$
Now, let's consider the domain of $\mathrm{r}^{-1}(\mathrm{x})$. The cube root function is defied for all real numbers. So, the domain of $\mathrm{r}^{-1}(\mathrm{x})$ is \mathbb{R}.

In summary:
$\mathrm{r}^{-1}(\mathrm{x})=\sqrt[3]{x}+1$
Domain of $\mathrm{r}-1(\mathrm{x}): \mathbb{R}$
8)

Range of s :

The function $\mathrm{s}(\mathrm{x})=-\lceil r+2\rceil$ is an absolute value function with a reflection, and the negative sign ensures that the output is always negative. As x varies over all real numbers, the expression $=-\lceil r+2\rceil$ covers all real numbers but is always negative.

So, the range of $\mathrm{s}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x<0\}$.

Inverse Function $\mathbf{s}^{-1}(\mathbf{x})$ and its Domain:

To find the inverse function $\mathrm{s}^{-1}(\mathrm{x})$, interchange x and y in the equation
$\mathrm{s}(\mathrm{x})=-\lceil r+2\rceil$ and solve for $\mathrm{y}:$
$\mathrm{x}=-\lceil r+2\rceil$
Dividing both sides by -1 to isolate the absolute value:
$-\mathrm{x}=\lceil r+2\rceil$

Now, consider two cases:

1. $\mathrm{x} \geq 0$: $-\mathrm{x}=\mathrm{y}+2$, so $\mathrm{y}=-\mathrm{x}-2$.
2. $x<0:-x=-(y+2)$, so $y=-x-2$.

So, the inverse function $\mathrm{s}^{-1}(\mathrm{x})$ is given by:
$\mathrm{s}^{-1}(\mathrm{x})=-\mathrm{x}-2$
Now, let's consider the domain of $\mathrm{s}^{-1}(\mathrm{x})$. The inverse function is defined for all real numbers, so the domain of $\mathrm{s}^{-1}(\mathrm{x})$ is \mathbb{R}.
in summary:
$s^{-1}(x)=-x-2$
Domain of $\mathrm{x}^{-1}(\mathrm{x}): \mathbb{R}$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

