

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board
EDEXCEL (A-LEVEL)

TOPIC:

PAPER TYPE:
SOLUTION - 4 individual/ company/organization involved in copyright abuse.
1)

Range of h :

The function $\mathrm{h}(\mathrm{x})=2^{\mathrm{x}-1}$ is an exponential function with a base of 2 . As x varies over all
real numbers, the exponential function $\mathrm{h}(\mathrm{x})$ takes on all positive values. So, the range of h is $\{y \in \mathbb{R} \mid y>0\}$.

Inverse Function h-1(x) and its Domain:

To find the inverse function $\mathrm{h}-1(\mathrm{x})$, interchange x and y in the equation $\mathrm{h}(\mathrm{x})$ -2^{x-1} and solve for y :
$\mathrm{x}=2^{\mathrm{y}-1}$
Taking the logarithm base 2 of both sides:
$\log _{2}(\mathrm{x})=\mathrm{y}-1$
Solving for y :
$\mathrm{y}=\log _{2}(\mathrm{x})+1$
So, the inverse function $h^{-1}(x)$ is given by:
$\mathrm{h}-1(\mathrm{x})=\log _{2}(\mathrm{x})+1$
Now, let's consider the domain of $\mathrm{h}^{-1}(\mathrm{x})$. The logarithmic function is defined only for positive real numbers, so the domain of $\mathrm{h}^{-1}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x>0\}$.

In summary:
$\mathrm{h}^{-1}(\mathrm{x})=\log _{2}(\mathrm{x})+1$
Domain of $h^{-1}(\mathrm{x}):\{x \in \mathbb{R} \mid x>0\}$.

Range of p :

The quadratic function $p(x)=(x-3) 2+4$ has its veretex at $(3,1)$, , and the square term $(x-3) 2$ is always non - negative. Therefore, the minimum value of $p(x)$ is 4 , and as x varies over all real numbers, $p(x)$ takes on all values greater than or equal to 4 . So, the range of p is
$\{x \in \mathbb{R} \mid x \geq 4\}$.
Inverse Function $\mathrm{p}^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $\mathrm{p}^{-1}(\mathrm{x})$, interchange x and y in the equation $\mathrm{p}(\mathrm{x})$
$=(\mathrm{x}-3)^{2}+4$
and solve for y :

$$
y= \pm \sqrt{x-4}+3
$$

Since $p(x)$ is an upward - opening parabola, only the positive square root is considered to keep it as a function. So, the inverse function $\mathrm{p}^{-1}(\mathrm{x})$ is given by:
$p^{-1}(x)=\sqrt{x-4}+3$
Now, let's consider the domain or $\mathrm{p}-1(\mathrm{x})$. The square root function is defined only for non - negative real numbers, so the domain of $\mathrm{p}^{-1}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x \geq 4\}$.

In summary:
$p^{-1}(x)=\sqrt{x-4}+3$
Domain of $\mathrm{p}^{-1}(\mathrm{x}):\{x \in \mathbb{R} \mid x \geq 4\}$

3)

Range of \mathbf{m} :

The cubic function $\mathrm{m}(\mathrm{x})=\mathrm{x} 3-4 \mathrm{x}$ is defined for all real numbers. To find the range, we can analyze its behavior. The leading term is $x 3$, which means
the function increases without bound as x approaches positive or negative infinity. Therefore, the range of $\mathrm{m}(\mathrm{x})$ is all real numbers: Range of $\mathrm{m}=$ $\{y \in \mathbb{R}\}$

Inverse Function $\mathbf{m}^{-1}(\mathbf{x})$ and its Domain:

Finding the inverse function for a cubic function can be challenging due to its non - one - to - one nature. Cubic functions are not always invertible, and in this case, we may not able to find a simple algebraic expression for m^{-} ${ }^{1}(\mathrm{x})$.

In case where the inverse functions is not easily expressed algebraically, it may be represented graphically or numerically.

If we attempt to find the inverse function, we swap x and y and try to solve for y :
$x=y^{3}-4 y$
However, solving this cubic equation for y is generally complex and may involve numerical methods.

So, for this example, we may not provide a simple algebraic expression for the inverse function. The focus would be on the cubic function itself and its behavior.

In summary:
Range of $\mathrm{m}=\{y \in \mathbb{R}\}$
The inverse function $\mathrm{m}-1(\mathrm{x})$ may not have a simple algebraic expression.

Range of n :

The function $\mathrm{n}(\mathrm{x})=\frac{2 x}{x-4}$ is a rational function. As x approaches 4 , the denominator
(x-4) approaches O, leading to an undefined value. Therefore, the function has a vertical asymptote at $x=4$. Apart from that, the function can take any real value.

So, the range of $\mathrm{n}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x \neq 0\}$ since the function is undefined when $\mathrm{x}=4$.

Inverse Function $\mathbf{n}^{-1}(\mathbf{x})$ and its Domain:

To find the inverse function $\mathrm{n}-1(\mathrm{x})$. interchange x and y in the equation $\mathrm{n}(\mathrm{x})$ $=\frac{2 x}{x-4}$ and solve for y :
(x) $=\frac{2 x}{x-4}$

Now, solving for y :
$y=\frac{4 x}{x-2}$
So, the inverse function $\mathrm{n}^{-1}(\mathrm{x})$ is given by:
$\mathrm{n}-1(\mathrm{x})=\frac{4 x}{x-2}$
So, the inverse function $\mathrm{n}^{-1}(\mathrm{x})$ is given by:
$\mathrm{n}^{-1}(\mathrm{x})=\frac{4 x}{x-2}$
Now, let's consider the domain of $\mathrm{n}^{-1}(\mathrm{x})$. The inverse function is defined for all real numbers except where the original function is undefined. Since $n(x)$ undefined at $\mathrm{x}=4$, the domain of $\mathrm{n}^{-1}(\mathrm{x})$ is \mathbb{R}, excluding $\mathrm{x}=-2$ (where the denominator $(x+2)$ is equal to 0$)$.

In summary:
$\mathrm{n}-1(\mathrm{x})=\frac{4 x}{x-2}$
Domain of $\mathrm{n}-1(\mathrm{x})$: \mathbb{R}, excluding $\mathrm{x}=-2$.
5.

Range of r :
The logarithmic function $\log 2(x+4)$ is defined for $x>-4$. The range of $r(x)$ will be all
real numbers because the logarithm is defined for positive real numbers.

$$
\text { Range of } r=\{y \in \mathbb{R}\}
$$

Inverse Function $\mathrm{r}^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $x^{-1}(x)$, interchange x and y in the equation

$$
\mathrm{r}(\mathrm{x})=\log _{2}(\mathrm{x}+4)
$$

and solve for y :

$$
x=\log _{2}(y+4)
$$

rewrite in exponential form:

$$
2^{x}=y+4
$$

Solve for y :

$$
Y=2^{x}-4
$$

So, the inverse function $r^{-1}(x)$ is given by $r^{-1}(x)=2^{x}-4$.
Now, let's consider the domain of $\mathrm{r}-1(\mathrm{x})$. The exponential function 2^{x} is defined for all real numbers, and subtracting 4 does not impose any additional restrictions.

Therefore, the domain of $r^{-1}(x)$ is \mathbb{R}.

6.

Range of t :
The cubic function $\mathrm{t}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}-\mathrm{x}-3$ is defined for all real numbers. To find the
range, we can analyze its behavior. The leading term is x^{3}, which means the function increases without bound as x approaches positive or negative infinity. Therefore, the range of $t(x)$ is all real numbers:

Range of $t=\{y \in \mathbb{R}\}$

Inverse Function $\mathrm{t}^{-1}(\mathrm{x})$ and its Domain:
Finding the inverse function for a cubic function can be challenging due to its non - one - to - one nature. Cubic functions are not always invertible, and in this case, we may not be able to find a simple algebraic expression for $\mathrm{t}^{-1}(\mathrm{x})$.

In cases where the inverse function is not easily expressed algebraically, it may be represented graphically or numerically.

If we attempt to find the inverse function, we swap x and y and try to solve for y :

$$
x=y^{3}+2 y^{2}-y-3
$$

However, solving this cubic equation for y is generally complex may involve numerical method.

However, solving this cubic equation for y is generally complex and may involve numerical method.

So, for this example, we may not provide a simple algebraic expression for the inverse function. The focus would be on the cubic function itself and its behavior.

In summary:

$$
\text { Range of } \mathrm{t}=\{y \in \mathbb{R}\}
$$

The inverse function $\mathrm{t}^{-1}(\mathrm{x})$ may not have a simple algebraic expression.

7.

Range of f :

The function $v(\mathrm{x})=\log _{3}(|x|+2)$ involves a logarithm with a base of 3 .
The argument of the logarithm is $|x|+2$, and $|x|+2$ is always greater than or equal to 2 .

The logarithm is defined for positive arguments, so the minimum value of $f(\mathrm{x})$ is $\log _{3}(2)$,
which is greater than O . therefore, the range of $f(\mathrm{x})$ is all real numbers, excluding negative values.
so, the range of f is $\{y \in \mathbb{R} \mid y>0\}$

8.

Range of g :

The function $g(x)=\frac{1}{x-1}$ is defined for all real numbers except $x-1$. As x approaches 1 from the left ($\mathrm{x} \rightarrow 1^{-}$), $\mathrm{g}(\mathrm{x})$ goes to negative infinity, and as x approaches 1 from the right $\left(\mathrm{x} \rightarrow 1^{-}\right), \mathrm{g}(\mathrm{x})$ goes to positive infinity. Therefore, the range of $g(x)$ is all real numbers, excluding O.

So, the range of g is $\{y \in \mathbb{R} \mid y \neq 0\}$
Inverse Function $\mathrm{g}-1(\mathrm{x})$ and its Domain:
To find the inverse function $g-1(x)$, interchange x and y in the equation

$$
\mathrm{g}(\mathrm{x})=\frac{1}{x-1}
$$

for y :

$$
\mathrm{x}=\frac{1}{x-1}
$$

solving for y :

$$
y=\frac{1}{x}+1
$$

so the inverse function $g^{-1}(x)$ is given by

$$
\mathrm{g}^{-1}(\mathrm{x})=\frac{1}{x}+1
$$

Now, let's consider the domain of $\mathrm{g}-1(\mathrm{x})$. The inverse function is defined for all real numbers except $\mathrm{x}-0$ (since division by zero is undefined).

In summary:

$$
\mathrm{g}^{-1}(\mathrm{x})=\frac{1}{x}+1
$$

Domain of $\mathrm{g}^{-1}(\mathrm{x}): \mathbb{R}$, exchanging $\mathrm{x}-0$

```
(0) www.chemistryonlinetuition.com
\square asherrana@chemistryonlinetuition.com
```


- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

