

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board
EDEXCEL (A-LEVEL)

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

Range of h :
The function $\mathrm{h}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ is the exponential function, and its range is all positive real numbers

Range of $\mathrm{h}=\{y \in \mathbb{R} \mid y>0\}$
Inverse Function h-1(x) and its Domain:
To find the inverse function $\mathrm{h}^{-1}(\mathrm{x})$, interchange x and y in the equation $\mathrm{h}(\mathrm{x})=$ e^{x} and solve for y :

$$
\mathrm{x}=\mathrm{e}^{\mathrm{y}}
$$

Taking the natural logarithm of both sides:

$$
\operatorname{In}(x)=y
$$

So, the inverse function $h^{-1}(x)$ is given by $h^{-1}(x)=\operatorname{In}(x)$.
Now, let's consider the domain of $\mathrm{h}^{-1}(\mathrm{x})$. The natural logarithm is defined only for positive real numbers, so the domain of $\mathrm{h}^{-1}(\mathrm{x})$ is $\mathrm{x}>0$.

In summary

$$
\mathrm{h}^{-1}(\mathrm{x})=\operatorname{In}(\mathrm{x})
$$

Domain of ${ }^{h-1}(\mathrm{x}): \mathrm{x}>0$
4)

Range of p :
To find the range of $p(x)$, we can complete the square on the quadratic expression:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}+3 \\
& =(\mathrm{x}-2)^{2}-1
\end{aligned}
$$

The square of any real number is non - negative, so (x-2)2 is always greater than or equal to zero. Therefore, the range of $\mathrm{p}(\mathrm{x})$ is all real numbers except
when $(x-2) 2=0$, which occurs when $x=2$. So, the range of p is all real numbers except -1 :

Range of $\mathrm{p}=\{y \in \mathbb{R} \mid y \neq-1\}$
Inverse Function $\mathrm{p}^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $\mathrm{p}^{-1}(\mathrm{x})$, interchange x and y in the equation

$$
\mathrm{p}(\mathrm{x})=(\mathrm{x}-2)^{2}-1
$$

and solve for y :

$$
x=(y-2)^{2}-1
$$

Adding 1 to both sides:

$$
x+1=(y-2)^{2}
$$

Taking the square root of both sides:

$$
\sqrt{x+1} y-2
$$

Solve for y :

$$
Y=\sqrt{x+1}+2
$$

So, the inverse function $\mathrm{p}-1(\mathrm{x})$ is given by $\mathrm{p}-1(\mathrm{x})=\sqrt{x+1}+2$.
Now, let's consider the domain of $\mathrm{p}-1(\mathrm{x})$. The square root is defined only for non - negative real numbers, so $\sqrt{x+1}$ is defined when $x+1 \geq 0$.
Therefore, the domain of $\mathrm{p}-1(\mathrm{x})$ is $\mathrm{x} \geq-1$.
In summary:

$$
\mathrm{p}-1(\mathrm{x})=\sqrt{x+1}+2
$$

Domain of $\mathrm{p}-1(\mathrm{x}): \mathrm{x} \geq-1$
5.

Range of r :
The logarithmic function $\log 2(x+4)$ is defined for $x>-4$. The range of $r(x)$ will be all real numbers because the logarithm is defined for positive real numbers.

$$
\text { Range of } r=\{y \in \mathbb{R}\}
$$

Inverse Function $r^{-1}(x)$ and its Domain:
To find the inverse function $x^{-1}(x)$, interchange x and y in the equation

$$
r(x)=\log _{2}(x+4)
$$

and solve for y :

$$
x=\log _{2}(y+4)
$$

rewrite in exponential form:

$$
2^{x}=y+4
$$

Solve for y :

$$
Y=2^{x}-4
$$

So, the inverse function $r^{-1}(x)$ is given by $r^{-1}(x)=2^{x}-4$.
Now, let's consider the domain of $\mathrm{r}-1(\mathrm{x})$. The exponential function 2^{x} is defined for all real numbers, and subtracting 4 does not impose any additional restrictions.

Therefore, the domain of $\mathrm{r}^{-1}(\mathrm{x})$ is \mathbb{R}.
6.

Range of t :
The cubic function $\mathrm{t}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}-\mathrm{x}-3$ is defined for all real numbers. To
find the range, we can analyze its behavior. The leading term is x^{3}, which means the function increases without bound as x approaches positive or negative infinity. Therefore, the range of $t(x)$ is all real numbers:

Range of $t=\{y \in \mathbb{R}\}$

Inverse Function $t^{-1}(x)$ and its Domain:
Finding the inverse function for a cubic function can be challenging due to its non - one - to - one nature. Cubic functions are not always invertible, and in this case, we may not be able to find a simple algebraic expression for $\mathrm{t}^{-1}(\mathrm{x})$. in cases where the inverse function is not easily expressed algebraically, it may be represented graphically or numerically.
If we attempt to find the inverse function, we swap x and y and try to solve for y :

$$
x=y^{3}+2 y^{2}-y-3
$$

However, solving this cubic equation for y is generally complex may involve numerical method.
However, solving this cubic equation for y is generally complex and may involve numerical method.

So, for this example, we may not provide a simple algebraic expression for the inverse function. The focus would be on the cubic function itself and its behavior.

In summary:
Range of $\mathrm{t}=\{y \in \mathbb{R}\}$
The inverse function $\mathrm{t}^{-1}(\mathrm{x})$ may not have a simple algebraic expression.

5)

Range of m :

The cubic function $m(x)=x^{3}-4 x$ is defined for all real numbers. To find the range, we can analyze its behavior. The leading term is $x 3$, which means the function increases without bound as x approaches positive or negative infinity. Therefore, the range of $m(x)$ is all real numbers: Range of $m=$ $\{y \in \mathbb{R}\}$

Inverse Function $\mathbf{m}^{-1}(\mathbf{x})$ and its Domain:

Finding the inverse function for a cubic function can be challenging due to its non - one - to - one nature. Cubic functions are not always invertible, and in this case, we may not able to find a simple algebraic expression for m^{-} ${ }^{1}(\mathrm{x})$.

In case where the inverse functions is not easily expressed algebraically, it may be represented graphically or numerically.
If we attempt to find the inverse function, we swap x and y and try to solve for y :
$x=y^{3}-4 y$
However, solving this cubic equation for y is generally complex and may involve numerical methods.

So, for this example, we may not provide a simple algebraic expression for the inverse function. The focus would be on the cubic function itself and its behavior.

In summary:
Range of $\mathrm{m}=\{y \in \mathbb{R}\}$
The inverse function $\mathrm{m}-1(\mathrm{x})$ may not have a simple algebraic expression.

6)

Range of n :

The function $\mathrm{n}(\mathrm{x})=\frac{2 x}{x-4}$ is a rational function. As x approaches 4, the denominator
($x-4$) approaches O, leading to an undefined value. Therefore, the function has a vertical asymptote at $x=4$. Apart from that, the function can take any real value.

So, the range of $\mathrm{n}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x \neq 0\}$ since the function is undefined when $x=4$.

Inverse Function $\mathbf{n}^{-1}(\mathbf{x})$ and its Domain:

To find the inverse function $\mathrm{n}-1(\mathrm{x})$. interchange x and y in the equation $\mathrm{n}(\mathrm{x})$ $=\frac{2 x}{x-4}$ and solve for y :
(x) $=\frac{2 x}{x-4}$

Now, solving for y :
$\mathrm{y}=\frac{4 x}{x-2}$
So, the inverse function $\mathrm{n}^{-1}(\mathrm{x})$ is given by:
$\mathrm{n}-1(\mathrm{x})=\frac{4 x}{x-2}$
So, the inverse function $\mathrm{n}^{-1}(\mathrm{x})$ is given by:
$\mathrm{n}^{-1}(\mathrm{x})=\frac{4 x}{x-2}$
Now, let's consider the domain of $\mathrm{n}^{-1}(\mathrm{x})$. The inverse function is defined for all real numbers except where the original function is undefined. Since $n(x)$ undefined at $\mathrm{x}=4$, the domain of $\mathrm{n}^{-1}(\mathrm{x})$ is \mathbb{R}, excluding $\mathrm{x}=-2$ (where the denominator $(x+2)$ is equal to 0$)$.

In summary:
$\mathrm{n}-1(\mathrm{x})=\frac{4 x}{x-2}$
Domain of $\mathrm{n}-1(\mathrm{x}): \mathbb{R}$, excluding $\mathrm{x}=-2$.
7)

Ranger of \mathbf{p} :

The function $\mathrm{p}(\mathrm{x})=\sqrt{x+3}$ is a square root function with a shift of 3 unit to the left.

The square root a defined only for non - negative values, and the shift ensures that
the function is always, defined for $\mathrm{x} \geq-3$. As x varies over all real numbers greater than or equal to -3 , the expression $\sqrt{x+3}$ covers all non - negative real numbers.

So, the range of $\mathrm{p}(\mathrm{x})$ is $\{y \in \mathbb{R} \mid y \geq 0\}$.

Inverse Function $\mathbf{p - 1}(\mathbf{x})$ and its Domain:

To find the inverse function $\mathrm{p}^{-1}(\mathrm{x})$, interchange x and y in the equation $\mathrm{p}(\mathrm{x})$
$=\sqrt{x+3}$
and solve for y :
$\mathrm{x}=\sqrt{y+3}$
Squaring both sides:
$x^{2}=y+3$
Solving for y :
$y=x^{2}-3$
So, the inverse function $\mathrm{p}^{-1}(\mathrm{x})$ is given by:
$\mathrm{p}^{-1}(\mathrm{x})=\mathrm{x}^{2}-3$

Now, let's consider the domain of $\mathrm{p}-1(\mathrm{x})$. The inverse function is defined for all real
numbers, so the domain of $\mathrm{p}^{-1}(\mathrm{x})$ is \mathbb{R}.
In summary:
$\mathrm{p}^{-1}(\mathrm{x})=\mathrm{x}^{2}-3$
Domain of $\mathrm{p}^{-1}(\mathrm{x}): \mathbb{R}$
8)

Range of \mathbf{y} :

The function $\mathrm{q}(\mathrm{x})=2^{\mathrm{x}}$ is an exponential function with a base of 2 . As x varies over all real numbers, the expression 2^{x} covers all positive real numbers.
So, the range of $\mathrm{q}(\mathrm{x})$ is $\{y \in \mathbb{R} \mid y>0\}$.

Inverse Function $\mathbf{q}^{-1}(\mathbf{x})$ and its Domain:

To find the Inverse Function $q^{-1}(x)$, interchange x and y in the equation $\mathrm{q}(\mathrm{x})=2 \mathrm{x}$ and
solve for y :
$\mathrm{x}=2^{\mathrm{y}}$
Taking the logarithm base 2 of both sides:
$\log _{2}(\mathrm{x})=\mathrm{y}$
So, the inverse function $y^{-1}(x)$ is given by:
$\mathrm{q}^{-1}(\mathrm{x})=\log _{2}(\mathrm{x})$
Now, let's consider the domain of $y-1(x)$. The logarithmic function only for positive
real numbers, so the domain of $\mathrm{q}^{-1}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x>0\}$.

In summary:

$\mathrm{q}^{-1}(\mathrm{x})=\log _{2}(\mathrm{x})$
Domain of $\mathrm{q}^{-1}(\mathrm{x}):\{x \in \mathbb{R} \mid x>0\}$.

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com

Address: 210-Old Brompton Road, London SW5 OBS, UK

