

CHEMISTRY ONLINE

- TUITION -

Phone: +442081445350
www.chemistryonlinetuition.com

Email:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board
EDEXCEL (A-LEVEL)

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

TOTAL MARKS 38

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.
1.

Range of f :
The function $v(\mathrm{x})=\log _{3}(|x|+2)$ involves a logarithm with a base of 3 .
The argument of the logarithm is $|x|+2$, and $|x|+2$ is always greater than or equal to 2.

The logarithm is defined for positive arguments, so the minimum value of $f(\mathrm{x})$ is $\log _{3}(2)$,
which is greater than O . therefore, the range of $f(\mathrm{x})$ is all real numbers, excluding negative values.
so, the range of f is $\{y \in \mathbb{R} \mid y>0\}$
2.

Range of g :

The function $\mathrm{g}(\mathrm{x})=\frac{1}{x-1}$ is defined for all real numbers except $\mathrm{x}-1$. As x approaches 1 from the left $\left(\mathrm{x} \rightarrow 1^{-}\right), \mathrm{g}(\mathrm{x})$ goes to negative infinity, and as x approaches 1 from the right $\left(x \rightarrow 1^{-}\right), g(x)$ goes to positive infinity. Therefore, the range of $g(x)$ is all real numbers, excluding O .

So, the range of g is $\{y \in \mathbb{R} \mid y \neq 0\}$
Inverse Function $\mathrm{g}-1(\mathrm{x})$ and its Domain:
To find the inverse function $g-1(x)$, interchange x and y in the equation $g(x)-\frac{1}{x-1}$ for y :

$$
\mathrm{x}=\frac{1}{x-1}
$$

solving for y :

$$
y=\frac{1}{x}+1
$$

so the inverse function $\mathrm{g}^{-1}(\mathrm{x})$ is given by

$$
\mathrm{g}^{-1}(\mathrm{x})=\frac{1}{x}+1
$$

Now, let's consider the domain of $\mathrm{g}-1(\mathrm{x})$. The inverse function is defined for all real numbers except $\mathrm{x}-0$ (since division by zero is undefined).

In summary:
$\mathrm{g}^{-1}(\mathrm{x})=\frac{1}{x}+1$
Domain of $\mathrm{g}^{-1}(\mathrm{x})$: \mathbb{R}, exchanging $\mathrm{x}-0$
3.

Range of f :
To find the range of $f(\mathrm{x})$, we can complete the square on the quadratic expression:

$$
\begin{aligned}
f(\mathrm{x}) & =\mathrm{x}^{2}+2 \mathrm{x}+1 \\
& =(\mathrm{x}+1)^{2}
\end{aligned}
$$

The square of any real number is non - negative, so $(x+1) 2$ is always greater than or equal to zero. Therefore, the range of $f(\mathrm{x})$ is all non - negative real numbers:

Range of $f=\{y \in \mathbb{R} \mid y \geq 0\}$
Inverse Function $f^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $f^{-1}(\mathrm{x})$, interchange x and y in the equation $f(\mathrm{x})=(\mathrm{x}+1)^{2}$ and solve for y :

Taking the square root of both sides:

$$
\sqrt{x}=y=1
$$

Solving for y :

$$
y=\sqrt{x}-1
$$

So, the inverse function $f^{-1}(\mathrm{x})$ is given by $f^{-1}(\mathrm{x})=\sqrt{x}-1$.
Now, let's consider the domain of $f^{-1}(\mathrm{x})$. The square root is defined only for non negative real numbers, so \sqrt{x} is defined when $\mathrm{x} \geq 0$. Also, subtracting 1 does not affect this domain restriction. Therefore, the domain of $f^{-1}(\mathrm{x})$ is $\mathrm{x} \geq 0$.

In summary:
$f^{-1}(\mathrm{x})=\sqrt{x}-1$
Domain of $f^{-1}(\mathrm{x}): \mathrm{x} \geq 0$

Range of g :

The range of $g(x)$ can be determined by analyzing the linear expression $3 x-4$. Since the coefficient of x is positive, the function is increasing.

Also,
There are no restrictions on x other than $x \geq 2$. Therefore, the range of $g(x)$ is all numbers for $\mathrm{x} \geq 2$:

Inverse Function $\mathrm{g}^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $g^{-1}(x)$, interchange x and y in the equation $g(x)=3 x-4$ and solve for y :

$$
x=3 y-4
$$

Solve for y :

$$
y=\frac{x+4}{3}
$$

So, the inverse function $\mathrm{g}^{-1}(\mathrm{x})$ is given by $\mathrm{g}^{-1}(\mathrm{x})==\frac{x+4}{3}$ is defined for all real numbers. Therefore, the domain of $\mathrm{g}^{-1}(\mathrm{x})$ is \mathbb{R}.

In summary:

$$
\mathrm{g}^{-1}(\mathrm{x})=\frac{x+4}{3}
$$

Domain of $\mathrm{g}^{-1}(\mathrm{x}): \mathbb{R}$

5)

Range of h :

The function $h(x)=2^{x-1}$ is an exponential function with a base of 2 . As x varies over all real numbers, the exponential function $h(x)$ takes on all positive values. So, the range
of h is $\{y \in \mathbb{R} \mid y>0\}$.

Inverse Function h-1(x) and its Domain:

To find the inverse function $h-1(x)$, interchange x and y in the equation $h(x)-2^{x-1}$ and solve for y :
$\mathrm{x}=2^{\mathrm{y}-1}$

Taking the logarithm base 2 of both sides:
$\log _{2}(\mathrm{x})=\mathrm{y}-1$
Solving for y :
$\mathrm{y}=\log _{2}(\mathrm{x})+1$
So, the inverse function $h^{-1}(x)$ is given by:
$\mathrm{h}-1(\mathrm{x})=\log _{2}(\mathrm{x})+1$
Now, let's consider the domain of $\mathrm{h}^{-1}(\mathrm{x})$. The logarithmic function is defined only for positive real numbers, so the domain of $\mathrm{h}^{-1}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x>0\}$.

In summary:
$\mathrm{h}^{-1}(\mathrm{x})=\log _{2}(\mathrm{x})+1$
Domain of $h^{-1}(\mathrm{x}):\{x \in \mathbb{R} \mid x>0\}$.

6)

Range of p :

The quadratic function $p(x)=(x-3) 2+4$ has its veretex at $(3,1)$,, and the square term $(x-3) 2$ is always non - negative. Therefore, the minimum value of $p(x)$ is 4 , and as x varies over all real numbers, $\mathrm{p}(\mathrm{x})$ takes on all values greater than or equal to 4 . So, the range of p is $\{x \in \mathbb{R} \mid x \geq 4\}$.

Inverse Function $\mathrm{p}^{-1}(\mathrm{x})$ and its Domain:
To find the inverse function $\mathrm{p}^{-1}(\mathrm{x})$, interchange x and y in the equation $\mathrm{p}(\mathrm{x})$
$=(\mathrm{x}-3)^{2}+4$
and solve for y :

$$
y= \pm \sqrt{x-4}+3
$$

Since $\mathrm{p}(\mathrm{x})$ is an upward - opening parabola, only the positive square root is considered to keep it as a function. So, the inverse function $\mathrm{p}^{-1}(\mathrm{x})$ is given by:
$p^{-1}(x)=\sqrt{x-4}+3$
Now, let's consider the domain or $\mathrm{p}-1(\mathrm{x})$. The square root function is defined only for non - negative real numbers, so the domain of $\mathrm{p}^{-1}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x \geq 4\}$.
In summary:
$p^{-1}(x)=\sqrt{x-4}+3$
Domain of $\mathrm{p}^{-1}(\mathrm{x}):\{x \in \mathbb{R} \mid x \geq 4\}$
7)

Range of r:

The function $r(x)=(x-1)^{3}$ is a cubic function. As x varies over all real numbers, the expression $(x-1) 3$ can take on all real values.

So, the range of $r(x)$ is $\{y \in \mathbb{R}\}$.

Inverse Function r-1(x) and its Domain:

To find the inverse function $r^{-1}(x)$, interchange x and y In the equation $r(x)=(x-1)^{3}$ and solve for y :
$\mathrm{x}=(\mathrm{y}-1)^{3}$
Taking the cube root of both sides:
$y-1=\sqrt[3]{x}$
Solving for y :
$y=\sqrt[3]{x}+1$

So, the inverse function $r^{-1}(x)$ is given by:
$\mathrm{r}^{-1}(\mathrm{x})=\sqrt[3]{x}+1$
Now, let's consider the domain of $\mathrm{r}^{-1}(\mathrm{x})$. The cube root function is defied for all real numbers. So, the domain of $r^{-1}(x)$ is \mathbb{R}.

In summary:
$\mathrm{r}^{-1}(\mathrm{x})=\sqrt[3]{x}+1$
Domain of $\mathrm{r}-1(\mathrm{x}): \mathbb{R}$
8)

Range of s:

The function $\mathrm{s}(\mathrm{x})=-\lceil r+2\rceil$ is an absolute value function with a reflection, and the
negative sign ensures that the output is always negative. As x varies over all real numbers, the expression $=-\lceil r+2\rceil$ covers all real numbers but is always negative. So, the range of $\mathrm{s}(\mathrm{x})$ is $\{x \in \mathbb{R} \mid x<0\}$.

Inverse Function $\mathbf{s}^{-1}(\mathbf{x})$ and its Domain:

To find the inverse function $\mathrm{s}^{-1}(\mathrm{x})$, interchange x and y in the equation
$\mathrm{s}(\mathrm{x})=-\lceil r+2\rceil$ and solve for $\mathrm{y}:$
$\mathrm{x}=-\lceil r+2\rceil$
Dividing both sides by -1 to isolate the absolute value:
$-\mathrm{x}=\lceil r+2\rceil$

Now, consider two cases:

1. $\mathrm{x} \geq 0:-\mathrm{x}=\mathrm{y}+2$, so $\mathrm{y}=-\mathrm{x}-2$.
2. $x<0:-x=-(y+2)$, so $y=-x-2$.

So, the inverse function $\mathrm{s}^{-1}(\mathrm{x})$ is given by:

$$
\mathrm{s}^{-1}(\mathrm{x})=-\mathrm{x}-2
$$

Now, let's consider the domain of $\mathrm{s}^{-1}(\mathrm{x})$. The inverse function is defined for all real numbers, so the domain of $\mathrm{s}^{-1}(\mathrm{x})$ is \mathbb{R}.
in summary:
$\mathrm{s}^{-1}(\mathrm{x})=-\mathrm{x}-2$
Domain of $x^{-1}(x): \mathbb{R}$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine (M.B.B.S) in 2007
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Math's and Biology Tutor

CONTACT INFORMATION FOR

 CHEMISTRY ONLINE TUITION. UK Contact: 02081445350

- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com Address: 210-Old Brompton Road, London SW5 OBS, UK

