CHEMISTRY ONLINE - TUITION -

Phone: 00442081445350
www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

TOPIC:

PAPER TYPE:

TOTAL QUESTIONS

TOTAL MARKS28

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.
Q. 1

- To prove that the equation $K x^{2}+4 K x+3=0$ has no real roots if and only if $0 \leq K<\frac{3}{4}$, we can use the discriminant of a quadratic equation. The discriminant of a quadratic equation $a x^{2}+b x+c=0$ is given by $D=b^{2}-4 a c$. For real roots, the discriminant must be greater than or equal to zero.

$$
\Rightarrow \quad k x^{2}+4 k x+3=0
$$

Here

$$
A=k, b=4 k, c=3
$$

Then,

$$
\begin{aligned}
& D=b^{2}-4 a c \\
& D=(4 k)^{2}-4(k)(3) \\
& D=(16 k)^{2}-12 k
\end{aligned}
$$

- To have real roots, D must be greater than or equal to zero.
\Rightarrow

$$
16 k^{2}-12 k \geq 0
$$

\Longrightarrow

$$
4 k(4 k-3) \geq 0
$$

Here,

- (1) $4 k$ is always non-negative (zero or positive) for all real values of k.
- (2) $4 k-3$ is zero when $k=\frac{3}{4}$, and it's negative for $k<\frac{3}{4}$ and positive for $k>\frac{3}{4}$.
so, the inequality $4 k(4 k-3) \geq 0$ is true when
- Both factors are positive, which occurs when $k>\frac{3}{4}$.
- Both factors are positive, which occurs when $k=\frac{3}{4}$. For real roots, we want the discriminant to be greater than or equal to zero, which corresponds to the values of k where $4 k(4 k-3) \geq 0$ Therefore, the equation $k x^{2}+4 k x+3=0$ has no real roots if and only if $k<\frac{3}{4}$. so, we have shown that $0 \leq k<\frac{3}{4}$ is the range of values for which the equation has no real roots.
Q. 2
- (i) $3 x^{3}-17 x^{2}-6 x=0$

We can first factor out the common form of x

$$
\Rightarrow \quad x\left(3 x^{2}-17 x-6\right)=0
$$

$\Rightarrow \quad x=0 \quad$ or $\quad 3 x^{2}-17 x-6=0$
\quad Now, $\quad 3 x^{2}-17 x-6=0$
Here
$a=3, b=-17, c=-6$
Using quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Plugging these values into the formula

$$
\begin{array}{ll}
x=\frac{-(-17) \pm \sqrt{\left.(-17)^{2}-4\right)(3)(-6)}}{2(3)} \\
x=\frac{17 \pm \sqrt{284+72}}{6} \\
x=\frac{17 \pm \sqrt{361}}{6} & \\
x=\frac{17 \pm 19}{6} & \\
x=\frac{17+19}{6} & \text { or } \\
x=\frac{36}{6} & x=\frac{17-19}{6} \\
x=6 & x=\frac{-2}{6} \\
x= & x=\frac{-1}{3}
\end{array}
$$

- Now, We have three solution for the equation

$$
\begin{aligned}
& 3 x^{3}-17 x^{2}-6 x=0 \\
& x=0, x=6, x=\frac{-1}{3}
\end{aligned}
$$

so, these are all the solutions to the given condition.

- (ii) $3(y-2)^{6}-17(y-2)^{4}-6(y-2)^{2}=0$

$$
\begin{array}{cc}
\text { Let } & (y-2)^{2}=x \\
\Rightarrow & 3 x^{3}-17 x^{2}-6 x=0 \\
\Rightarrow & x\left(3 x^{2}-17 x-6\right)=0 \\
x=0 & \text { or } 3 x^{2}-17 x-6=0 \\
\text { But } & , \quad \text { Here }
\end{array}
$$

$$
\begin{array}{rll}
(y-2)^{2} & =0 & , \\
y-2 & =0 & , \\
y=2 & & \text { using quadratic formula } \\
y= & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

$$
\begin{aligned}
& \text { www.chemistryonlinetuition.com } \\
& x=\frac{-(-17) \pm \sqrt{(17)^{2}-4(3)(-6)}}{2(3)} \\
& x=\frac{17 \pm \sqrt{36}}{6} \\
& x=\frac{17 \pm 19}{6} \\
& \text {, } x=\frac{17+19}{6}, x=\frac{17-19}{6} \\
& \text {, } x=6 \quad, x=\frac{-1}{3} \\
& x=6 \quad, \quad x=\frac{-1}{3} \\
& \Rightarrow \quad(y-2)^{2}=6, \quad(y-2)^{2}=\frac{-1}{2} \\
& \Rightarrow y-2= \pm \sqrt{6} \text {, However, since the square of a real number } \\
& y-2= \pm \sqrt{6} \text {, cannot be negative a this equation has no } \\
& y-2= \pm \sqrt{6} \text {, real solution for } y \text {. } \\
& \text { and } \\
& y=2 \pm \sqrt{6}
\end{aligned}
$$

So, the real solutions for the original equation
$3(y-2)^{6}-17(y-2)^{4}-6(y-2)^{2}=0$
are:
$y=2+\sqrt{6} \quad y=2-\sqrt{6} \quad y=2$
Q. 3
(i)
$16 a^{2}=2 \sqrt{a}$
Dividing by 2

$$
8 a^{2}=\sqrt{a}
$$

squaring on both sides, we get

$$
\begin{aligned}
& 64 a^{4}=a \\
& \Rightarrow \quad 64 a^{4}-a=0 \\
& a\left(64 a^{3}-1\right)=0 \\
& \Rightarrow \\
& a=0 \quad \text { and } \quad 64 a^{3}-1=0 \\
& \Rightarrow \\
& 64 a^{3}=1
\end{aligned}
$$

$$
\begin{array}{ll}
\Longrightarrow & a^{3}=\frac{1}{64} \\
\Rightarrow & a^{3}=\frac{1}{4^{3}} \\
\Longrightarrow & a=\frac{1}{4}
\end{array}
$$

So,
The two real solutions to the equation $16 a^{2}=2 \sqrt{a}$ are $a=0$ and $a=\frac{1}{4}$.
(ii)

$$
\begin{aligned}
& b^{4}+7 b^{2}-18=0 \\
\Rightarrow & \left(b^{2}\right)^{2}+7\left(b^{2}\right)-18=0 \\
& \text { Let } y=b^{2} \\
\Rightarrow & y^{2}+7 y-18=0 \\
\Rightarrow & \text { Factorization } \\
\Rightarrow & y^{2}+9 y-2 y-18=0 \\
\Rightarrow & y(y+9)-2(y+9)=0 \\
\Rightarrow & (y-2)(y+9)=0 \\
\Rightarrow & y-2=0, \quad y+9=0 \\
\Rightarrow & y=2, \quad y=-9 \\
& \text { But }, \quad b^{2}=-9 \\
& b^{2}=2, \\
\Rightarrow & b= \pm \sqrt{2}
\end{aligned}
$$

- For $b^{2}=-9$, there are no real solutions because you cannot take the square root of a negative number.
- So, the real solutions to the equation $b^{4}+7 b^{2}-18=0$ are $b=\sqrt{2}$ and $b=-\sqrt{2}$
Q. 4
(a) $2 x^{2}+4 x+9$

$$
\begin{aligned}
& =\left(x^{2}+2 x+\frac{9}{2}\right) \\
& =2\left(x^{2}+2 x+1-1+\frac{9}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2\left((x+1)^{2}-1+\frac{9}{2}\right) \\
& =2\left((x+1)^{2} \frac{7}{2}\right) \\
& =2(x+1)^{2}+7
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { At } x=0, y=9 \\
& \text { Minimum at }(-1,7)
\end{aligned}
$$

(c)

$$
f(x)=2 x^{2}+4 x+9
$$

$$
\text { shift } 2 \text { right } f(x-2)
$$

\Rightarrow

$$
\begin{aligned}
f(x-2) & =2(x-2)^{2}+4(x-2)+9 \\
& =2(x-2)^{2}+4 x-8+9 \\
& =2(x-2)^{2}+4 x+1
\end{aligned}
$$

Then to transform to $g(x)$ need -4 full transformation is translate $\binom{2}{-4}$.
so by (ii),

$$
f(x)=2(x+1)^{2}+7
$$

Minimum point $=(-1,7)$

$$
\begin{aligned}
& h(x)=\frac{21}{2 x^{2}+4 x+9} \\
& h(x)=21\left(2 x^{2}+4 x+9\right)^{-1}
\end{aligned}
$$

\Rightarrow

$$
\begin{aligned}
h^{\prime}(x) & =-21\left(2 x^{2}+4 x+9\right)^{-2}(4 x+4) \\
h^{\prime}(x) & =\frac{-21(4 x+4)}{\left(2 x^{2}+4 x+9\right)^{2}} \\
h^{\prime}(x) & =0 \text { when } x=-1 \\
h^{\prime}(x) & =\frac{21}{2(-1)^{2}+4(-1)+9} \\
& =\frac{21}{7}=3
\end{aligned}
$$

As

$$
x \rightarrow \infty \quad \text { or } \quad x \rightarrow-\infty
$$

\Rightarrow
$h(x) \rightarrow 0$
Range $0<h(x) \leq 3$
Q. 5

The discriminant is given by:
Discriminant $=0$

$$
b^{2}-4 a c=0
$$

But, the coefficient are

$$
a=k, b=k-3, c=1
$$

\Rightarrow

$$
\begin{aligned}
& (k-3)^{2}-4(k)(1)=0 \\
& k^{2}+9-6 k-4 k=0 \\
& k^{2}-10 k+9=0 \\
& \text { Factorization } \\
& k^{2}-9 k-k+9=0 \\
& k(k-9)-1(k-9)=0 \\
& (k-1)(k-9)=0 \\
& k-1=0, \quad k-9=0 \\
& k=1, \quad k=9
\end{aligned}
$$

so, the possible values of k for the quadratic equation to have two equal real roots are:
$k=9$ and $k=1$.
Q. 6
(a) two real solutions

$$
\begin{array}{ll}
\Rightarrow & \\
& b^{2}-4 a c>0 \\
& k x^{2}+4 x+(5-k+=0 \\
& (4)^{2}-4 k(5-k)>0 \\
& 16-20 k+4 k^{2}>=0 \\
\Rightarrow & \\
& 4 k^{2}-20 k+16>0 \\
\Rightarrow \quad & \\
& k^{2}-5 k+4>0
\end{array}
$$

(b) As
www.chemistryonlinetuition.com
$k^{2}-5 k+4>0$
$k^{2}-k-4 k+4>0$
$k(k-1)-4(k-1)>0$
$(k-4)(k-1)=0$
\Longrightarrow
Either $k<1$ or $k>4$
Q. 7

The discriminant is given by
Discriminant <0
$b^{2}-4 a c<0$
$(6 k)^{2}-4(k)(5)<0$
$36 k^{2}-20 k<0$
$4 k(9 k-5)<0$
Divide both sides by 4
$K(9 k-5)<0$
Apply zero product property
$K=0$ or $9 k-5=0$
, $K=\frac{5}{9}$
\Rightarrow
$4 k$ is positive, and $9 k-5$ is negative

$$
0<k<\frac{5}{9}
$$

\Rightarrow
$4 k$ is negative, and $9 k-5$ is positive

$$
0>k>\frac{5}{9}
$$

\Rightarrow

$$
K \in\left(0, \frac{5}{9}\right)
$$

(a)

Substitute $x=-4$ into $k x^{2}+(3 k+1) x-8=0$

$$
\begin{aligned}
& k(-4)^{2}+(3 k+1)(-4)-8=0 \\
& \Rightarrow \\
& 16 k-12 k-4-8=0 \\
& 4 k-12=0 \\
& 4 k=12 \\
& k=3
\end{aligned}
$$

(b)

First we have the value of k, which is 4 , so $k=3$
\therefore By parts (a)
\Rightarrow

$$
k x^{2}+(3 k+1) x+8=0
$$

$$
3 x^{2}+10 x-8=0
$$

Factorization

$$
\begin{aligned}
& 3 x^{2}+12 x-2 x-8=0 \\
& 3 x(x+4)-2(x+4)=0 \\
& (3 x-2)(x+4)=0 \\
& 3 x-2=0 \text { or } x+4=0 \\
& x=\frac{2}{3} \quad \text { or } x=-4
\end{aligned}
$$

so, the second possible value of x is:

$$
x=\frac{2}{3} \quad \text { and } \quad x=-4
$$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACTINFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

