

CHEMISTRY ONLINE

 - TUITION -Phone: 00442081445350
www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

```
Level & Board
EDEXCEL (A-LEVEL)
```

TOPIC: QUADRATICS8
Q. 1

Given:
Roots are equal.

$$
\begin{array}{ll}
\Rightarrow & \text { Di2scriminant }=0 \\
\Rightarrow & b^{2}-4 a c=0 \\
& \text { Where } a=3, b=-k \sqrt{3}, c=4 \\
\Rightarrow & (-\mathrm{k} \sqrt{3})^{2}-4(3)(4)=0 \\
\Rightarrow & 3 k^{2}-64=0 \\
\Rightarrow & 3 k^{2}=64 \\
\Rightarrow & \frac{3 k^{2}}{3}=\frac{64}{3} \\
\Rightarrow & k^{2}=16 \\
\Rightarrow & k \pm 4
\end{array}
$$

So,

$$
k=4,-4
$$

Q. 2

This equation is Based on the nature of roots.
Let
Equation is $a x^{2}+b x+c=0$ and the discriminant $=b^{2}-4 a c$ If Discriminant $=0$

Then equation has real roots.
$b^{2}-4 a c=0$
Here, $a=k+3, b=2(k+3), c=4$
$\Rightarrow \quad[2(k+3)]^{2}-4[k+3][4]=0$
$\Rightarrow 4(k+3)^{2}-16(k+3)=0$
Dividing by 4 on both side

$$
(k+3)^{2}-4(k+3)=0
$$

$$
k^{2}+6 k+9-4 k-12=0
$$

$k^{2}+2 k-3=0 \quad \because$ Factorize
$k^{2}+3 k-k-3=0$
$k(k+3)-1(k+3) \stackrel{\text { www.chemistryonlinetuition.com }}{=}$
$(k+3)(k-1)=0$
$k=-3, k=1$
But $k=-3$ not possible (Coefficient of $x^{2} \pm 0$
so, value of $k=1$.
Q. 3

$$
\begin{array}{cc}
& \text { Given equation } \\
& 9 x^{2}+6 k x+4=0 \\
& \text { Since it has equal roots } \\
& \text { Discriminant }=0 \\
\Rightarrow & b^{2}-4 a c=0 \\
& \text { Putting } a=9, b=6 k, c=4 \\
\Rightarrow & (6 k)^{2}-4(9)(4)=0 \\
\Rightarrow & 36 k^{2}-144=0 \\
\Rightarrow & 36 k^{2}=144 \\
\Rightarrow & k^{2}=\frac{144}{36} \\
\Rightarrow & k^{2}=\left(\frac{12}{6}\right)^{2} \\
\Rightarrow & k= \pm\left(\frac{12}{6}\right)
\end{array}
$$

OR

$$
K= \pm 2
$$

$$
\text { Thus, } k=2,-2
$$

Q. 4

(a) $\quad f(x)=x^{2}+4 k x+(3+11 k)$
$\Rightarrow \quad$ Add and subtract $4 k^{2}$

$$
\begin{aligned}
& f(x)=x^{2}+4 k x+4 k^{2}+3+11 k-4 k^{2} \\
& f(x)=(x+2 k)^{2}+\left(3+11 k-4 k^{2}\right)
\end{aligned}
$$

Here,

$$
\left\{p=2 k, q=3+11 k-4 k^{2}\right\}
$$

(b) $f(x)=0$ has no real roots.

Thus,

$$
\begin{aligned}
& \text { Discriminant }<0 \\
& \text { Thus } b^{2}-4 a c<0 \\
& (4 k)^{2}-4(3+11 k)<0 \\
& 16 k^{2}-12-44 k<0 \\
& \text { Dividing by ' } 4 \text { ' } \\
& 4 k^{2}-3-11 k<0 \\
& \Rightarrow \quad 4 k^{2}-11 k-3<0 \\
& \text { So, } \\
& 4 k^{2}-12 k+k-3<0 \\
& 4 k(k-3)+1(k-3)<0 \\
& (4 k+1)(k-3)<0 \\
& 4 k+1<0 \quad, \quad k-3<0 \\
& 4 k<-1 \quad, k<3 \\
& K<\frac{-1}{4} \quad \text {, } \\
& K<-0.25 \text {, } \\
& \text { So } \\
& -0.25<K<3 \\
& \text { S.S }=\{k \mid-0.25<k<3\} \\
& \text { (c) When } k=1 \\
& F(x)=x^{2}+4 x+14 \\
& \text { The graph is as below }
\end{aligned}
$$

$$
y=x^{2}+4 x+14
$$

$\left[\begin{array}{c|c|c|c|c} & & 20 & & \\ \hline & & 15 & (0,14) & \\ \hline & & 10 & & \\ \hline & & 5 & & \\ \hline & -5 & & 5 & \end{array}\right]$
Q. 5

Given that $1, r, r^{2}$ are the roots of the equation

$$
x^{3}+2 x^{2}+10 x+k=0
$$

Then the relation between the roots and coefficients are given by:

$$
\begin{aligned}
& 1+r+r^{2}=-2 \\
& 1 . r+r \cdot r^{2}+r^{2} .1=10 \rightarrow(1) \\
& \text { Ir. } r^{2}=-k \rightarrow(3)
\end{aligned}
$$

From (1), we have
$r+r^{2}=-3$
from (2), we have

$$
\begin{aligned}
& r+r^{3}+r^{2}=10 \\
& r^{3}-3=10 \\
& r^{3}=10+3=13
\end{aligned}
$$

From (3) we have
$r^{3}=-k \Rightarrow 13=-k \Rightarrow k=-3$
Q. 6

$$
\text { Here } a=1, b=3 p, c \stackrel{\text { wuv.chemistryonlinetuition.com }}{=} p
$$

\because Discriminant $=0$

$$
b^{2}-4 a c=0
$$

$$
(3 p)^{2}-4(1)(p)=0
$$

$$
9 p^{2}-4 p=0
$$

$$
p(9 p-4)=0
$$

$$
P=0 \quad \text { or } \quad P=\frac{4}{9} \quad \text { Thus, } \quad P=0, \frac{4}{9}
$$

Q. 7 It is given in the problem that the roots of the equation $x^{2}-k x+28=0$ are y

$$
\begin{array}{ll}
& \text { and } y+3(k \pm 0) \\
& \alpha=y, \beta=y+3 \\
& \lfloor\alpha-\beta\rfloor=\lfloor y-y-3\rfloor=3 \\
& \because(\alpha+\beta)^{2}=9 \\
\Rightarrow \quad & (\alpha+\beta)^{2}-4 \alpha \beta=9 \\
& \because \alpha+\beta=k \\
& \because \alpha \beta=28 \\
\Rightarrow \quad & (k)^{2}-4(28)=9 \\
& k^{2}-112=9 \\
& k^{2} 121 \\
\Rightarrow \quad & k \pm 11
\end{array}
$$

so,
The k values are -11 or 11
Q. 8

$$
k x^{2}+4 x+(5-k)=0
$$

(a) We know that the equation has 2 different real solution for x so,

$$
\begin{gathered}
D>0 \\
\Rightarrow \quad b^{2}-4 a c>0 \\
\text { so,, }
\end{gathered}
$$

$$
(4)^{2}-4(k)(5-k)>0
$$

$$
\begin{array}{ll}
& 16-20 k+4 k^{2}>0 \\
\Rightarrow & 4 k^{2}-20 k+16>0 \\
\Rightarrow \quad & k^{2}-5 k+4>0 \\
& \text { so, it has proved }
\end{array}
$$

(b) $k^{2}-5 k+4>0$

$$
\begin{aligned}
& k^{2}-4 k-k+4>0 \\
& k(k-4)-1(k-4)>0 \\
& (k-1)(k-4)>0
\end{aligned}
$$

So,

$$
k<1 \quad \text { or } \quad k>4
$$

- $\{$ The answer is $k \in(-\infty, 1) u(4,+\infty)\}$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

. UK Contact: 02081445350

- International Phone/WhatsApp: 00442081445350
- Website: WWW.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

