

Phone: 00442081445350

www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level & Board	EDEXCEL (A-LEVEL)
TOPIC:	QUADRATICS
PAPER TYPE:	SOLUTION 4
TOTAL QUESTIONS	8
TOTAL MARKS	42

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

(a) Two real solutions $\Rightarrow b^{2} - 4ac > 0$ $kx^{2} + 4x + (5 - k + = 0)$ $(4)^{2} - 4k (5 - k) > 0$ $16 - 20k + 4k^{2} > = 0$ $\Rightarrow 4k^{2} - 20k + 16 > 0$ $\Rightarrow k^{2} - 5k + 4 > 0$ (b) As $k^{2} - 5k + 4 > 0$ $k^{2} - k - 4k + 4 > 0$ K(k-1) - 4(k-1) > 0 (k-4) (k-1) = 0

Either k < 1 or k > 4

CHEMISI

• To prove that the equation $Kx^2 + 4Kx + 3 = 0$ has no real roots if and only if $O \le K < \frac{3}{4}$, We can use the discriminant of a quadratic equation. The discriminant of a quadratic equation $ax^2 + bx + c = 0$ is given by

 $D = b^2 - 4ac$. For real roots, the discriminant must be greater than or equal to zero.

 \Rightarrow kx²+4kx + 3 = 0

Here

A = k, b = 4k, c = 3

Then,

 $D = b^2 - 4ac$

Q.2

www.chemistryonlinetuition.com

$$D = (4k)^2 - 4(k)(3)$$

$$D = (16k)^2 - 12k$$

To have real roots, D must be greater than or equal to zero.
 ⇒

$$16k^2 - 12k \ge 0$$

 \Rightarrow

$$4k(4k-3) \ge 0$$

Here,

- (1) 4k is always non-negative (zero or positive) for all real values of k.
- (2) 4k 3 is zero when $k = \frac{3}{4}$, and it's negative for $k < \frac{3}{4}$ and positive for $k > \frac{3}{4}$. So, the inequality $4k(4k-3) \ge 0$ is true when
- Both factors are positive, which occurs when $k > \frac{3}{4}$.
- Both factors are positive, which occurs when k = ³/₄.
 For real roots, we want the discriminant to be greater than or equal to zero, which corresponds to the values of k where 4k(4k-3)≥0
 Therefore, the equation kx² +4kx + 3 = 0 has no real roots if and only if k< ³/₄. so, we have shown that o ≤ k< ³/₄ is the range of values for which the equation has no real roots.

Q.3

The discriminant is given by:

$$Discriminant = 0$$

$$b^2 - 4ac = 0$$

But, the coefficient are

a = k, b = k-3, c = 1

am Sorry !!!!!

 $(k-3)^{2}-4(k)(1) = 0$ $k^{2} + 9 - 6k - 4k = 0$ $k^{2} - 10k + 9 = 0$ Factorization $k^{2} - 9k - k + 9 = 0$ www.chemistryonlinetuition.com K(k-9) - 1(k-9) = 0 (k-1)(k-9) = 0 K - 1 = 0, k-9 = 0K = 1, k = 9

So, the possible values of k for the quadratic equation to have two equal real roots are:

k = 9 and k = 1.

Q.4

This equation is Based on the nature of roots. Let Equation is $ax^2 + bx + c = 0$ and the discriminant $= b^2 - 4ac$ If Discriminant = 0Then equation has real roots. $b^2 - 4ac = 0$ Here, a = k+3, b = 2(k+3), c=4 $[2(k+3)]^2 - 4[k+3][4] = 0$ $4(k+3)^2 - 16(k+3) = 0$ \Rightarrow Dividing by 4 on both side $(k+3)^2 - 4(k+3) = 0$ $k^{2}+6k+9-4k-12=0$ $k^2 + 2k - 3 = 0$: Factorize $k^2 + 3k - k - 3 = 0$ K(k+3) - 1(k+3) = 0(k+3)(k-1) = 0K = -3, k = 1But k = -3 not possible (Coefficient of $x^2 \pm 0$ So, value of k = 1.

I am Sorry !!!!!

Q.5 Here
$$a = 1$$
, $b = 3p$, $c = p$
 \therefore Discriminant = 0
 $b^2 - 4ac = 0$
 $(3p)^2 - 4(1)(p) = 0$
 $9p^2 - 4p = 0$
 $P(9p - 4) = 0$
 $P = 0$ or $p = \frac{4}{9}$ Thus, $P = 0, \frac{4}{9}$

Q.6

 $kx^2 + 4x + (5-k) = 0$

(a) We know that the equation has 2 different real solution for x So,

D > 0
⇒
$$b^2 - 4ac > 0$$

So,,
 $(4)^2 - 4(k)(5-k) > 0$
 $16 - 20k + 4k^2 > 0$
⇒ $4k^2 - 20k + 16 > 0$
⇒ $k^2 - 5k + 4 > 0$
So, it has proved
 $= -2(x - 3)^2 + 20$

Q.7

Given

 $2qx^2 + qx - 1 = 0$

For a quadratic equation,

$$ax^2 + bx + c = 0$$

The expression for solutions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(a) Since, given is a quadratic equation with no real roots, its discriminant must be:

 $b^{2}-4ac < 0$ $(q)^{2}-4(2q)(-1) < 0$ $q^{2}+8q < 0 \text{ (Hence Proved)}$ $q^{2}+8q = 0$ q(q+8) = 0 q = 0 or q = -8So, the critical points on curve for given condition are -8 and 0. Therefore, conditions for

$$q^{2}+8q < 0$$
 are:
 $q > -8$
 $q < 0$
 $-8 < q < 0$

Q.8

(b)

 $4 - 3x - x^2$

 $4 - (x^2 + 3x)$

Complete the square coefficient of the x term: 3 divide it in half: $\frac{3}{2}$

Square it: $\left(\frac{3}{2}\right)^2$ Use $\left(\frac{3}{2}\right)^2$ to complete the square: $= 4 + \left(\frac{3}{2}\right)^2 - \left(x^2 + 3x + \left(\frac{3}{2}\right)^2\right)$ $= \frac{25}{4} - \left(x + \frac{3}{2}\right)^2$ \oplus www.chemistryonlinetuition.com

TUTIC Phone: +442081445350 www.chemistryonlinetuition.com Email: asherrana@chemistryonlinetuition.com

DR. ASHAR RANA

- Founder & CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE & EDEXCEL Examiner since 2015
- · Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR CHEMISTRY ONLINE TUITION

- · UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- · Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- · Address: 210-Old Brompton Road, London SW5 OBS, UK