

CHEMISTRY ONLINE

- TUITION -

Phone: 00442081445350
www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

PURE MATH

ALGEBRA AND FUNCTION

Level \& Board
EDPEXCEL (A-LEVEL)
PAPER TYPE:
QUADRATICS
TOTAL QUESTIONS
SOLUTION 4
TOTAL MARKS

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Quadratics 4

Q. 1

$$
\text { (a) } \begin{array}{ll}
& \text { Two real solutions } \\
\Rightarrow & \\
& b^{2}-4 a c>0 \\
& \mathrm{k} x^{2}+4 \mathrm{x}+(5-\mathrm{k}+=0 \\
& (4)^{2}-4 \mathrm{k}(5-\mathrm{k})>0 \\
& 16-20 \mathrm{k}+4 k^{2}>=0 \\
\Rightarrow & \\
\Rightarrow & 4 k^{2}-20 \mathrm{k}+16>0 \\
& k^{2}-5 \mathrm{k}+4>0
\end{array}
$$

(b) As
$k^{2}-5 \mathrm{k}+4>0$
$k^{2}-\mathrm{k}-4 \mathrm{k}+4>0$
$K(k-1)-4(k-1)>0$
$(k-4)(k-1)=0$
\Longrightarrow
Either $\mathrm{k}<1$ or $\mathrm{k}>4$

Q. 2

- To prove that the equation $\mathrm{Kx}^{2}+4 \mathrm{Kx}+3=0$ has no real roots if and only if $\mathrm{O} \leq$ $\mathrm{K}<\frac{3}{4}$, We can use the discriminant of a quadratic equation. The discriminant of a quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is given by
$\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}$. For real roots, the discriminant must be greater than or equal to zero.

$$
\Rightarrow \quad \mathrm{kx}^{2}+4 \mathrm{kx}+3=0
$$

Here

$$
\mathrm{A}=\mathrm{k}, \mathrm{~b}=4 \mathrm{k}, \mathrm{c}=3
$$

Then,

$$
\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}
$$

$$
\begin{aligned}
& \mathrm{D}=(4 k)^{\text {www.chemistryonlinetution.com }}-4(\mathrm{k})(3) \\
& \mathrm{D}=(16 k)^{2}-12 \mathrm{k}
\end{aligned}
$$

- To have real roots, D must be greater than or equal to zero.

$$
\begin{array}{ll}
\Rightarrow & 16 k^{2}-12 \mathrm{k} \geq 0 \\
\Rightarrow & 4 \mathrm{k}(4 \mathrm{k}-3) \geq 0
\end{array}
$$

- (1) 4 k is always non-negative (zero or positive) for all real values of k .
- (2) $4 \mathrm{k}-3$ is zero when $\mathrm{k}=\frac{3}{4}$, and it's negative for $\mathrm{k}<\frac{3}{4}$ and positive for $\mathrm{k}>\frac{3}{4}$. So, the inequality $4 \mathrm{k}(4 \mathrm{k}-3) \geq 0$ is true when
- Both factors are positive, which occurs when $\mathrm{k}>\frac{3}{4}$.
- Both factors are positive, which occurs when $\mathrm{k}=\frac{3}{4}$.

For real roots, we want the discriminant to be greater than or equal to zero, which corresponds to the values of k where $4 \mathrm{k}(4 \mathrm{k}-3) \geq 0$
Therefore, the equation $\mathrm{kx}^{2}+4 \mathrm{kx}+3=0$ has no real roots if and only if $\mathrm{k}<\frac{3}{4}$. so, we have shown that $\mathrm{o} \leq \mathrm{k}<\frac{3}{4}$ is the range of values for which the equation has no real roots.

The discriminant is given by:
Discriminant $=0$

$$
b^{2}-4 \mathrm{ac}=0
$$

But, the coefficient are

$$
a=k, b=k-3, c=1
$$

\Rightarrow

$$
\begin{aligned}
& (k-3)^{2}-4(\mathrm{k})(1)=0 \\
& k^{2}+9-6 \mathrm{k}-4 \mathrm{k}=0 \\
& k^{2}-10 \mathrm{k}+9=0
\end{aligned}
$$

Factorization

$$
k^{2}-9 \mathrm{k}-\mathrm{k}+9=0
$$

$$
K(k-9)-1(k-9)=0
$$

$$
(k-1)(k-9)=0
$$

$$
\begin{array}{ll}
\mathrm{K}-1=0 & , \quad \mathrm{k}-9=0 \\
\mathrm{~K}=1 & , \quad \mathrm{k}=9
\end{array}
$$

So, the possible values of k for the quadratic equation to have two equal real roots are:

$$
\mathrm{k}=9 \text { and } \mathrm{k}=1
$$

Q. 4

This equation is Based on the nature of roots.
Let
Equation is $\mathrm{a}^{2}+\mathrm{bx}+\mathrm{c}=0$ and the discriminant $=b^{2}-4 \mathrm{ac}$

$$
\text { If Discriminant = } 0
$$

Then equation has real roots.
$b^{2}-4 \mathrm{ac}=0$
Here, $a=k+3, b=2(k+3), c=4$
$\Rightarrow \quad[2(k+3)]^{2}-4[k+3][4]=0$
$\Rightarrow 4(k+3)^{2}-16(k+3)=0$
Dividing by 4 on both side
$(k+3)^{2}-4(k+3)=0$
$k^{2}+6 \mathrm{k}+9-4 \mathrm{k}-12=0$
$k^{2}+2 \mathrm{k}-3=0 \quad \because$ Factorize
$k^{2}+3 \mathrm{k}-\mathrm{k}-3=0$
$K(k+3)-1(k+3)=0$
$(k+3)(k-1)=0$
$\mathrm{K}=-3, \mathrm{k}=1$
But $\mathrm{k}=-3$ not possible (Coefficient of $x^{2} \pm 0$
So, value of $\mathrm{k}=1$.
Q. $5 \quad$ Here $\mathrm{a}=1, \mathrm{~b}=3 \mathrm{p}, \mathrm{c}=\mathrm{p}$
\because Discriminant $=0$

$$
b^{2}-4 \mathrm{ac}=0
$$

$$
(3 p)^{2}-4(1)(p)=0
$$

$9 p^{2}-4 \mathrm{p}=0$
$P(9 p-4)=0$
$\mathrm{P}=0 \quad$ or $\mathrm{p}=\frac{4}{9} \quad$ Thus, $\quad \mathrm{P}=0, \frac{4}{9}$

$$
\text { Q. } 6 \quad \mathrm{k} x^{2}+4 \mathrm{x}+(5-\mathrm{k})=0
$$

(a) We know that the equation has 2 different real solution for x So,

$$
\begin{aligned}
& \mathrm{D}>0 \\
\Rightarrow \quad & b^{2}-4 \mathrm{ac}>0
\end{aligned}
$$

So,,
$(4)^{2}-4(\mathrm{k})(5-\mathrm{k})>0$
$16-20 \mathrm{k}+4 k^{2}>0$
$\Rightarrow \quad 4 k^{2}-20 \mathrm{k}+16>0$
$\Rightarrow \quad k^{2}-5 \mathrm{k}+4>0$
So, it has proved
$=-2(x-3)^{2}+20$

Q. 7

Given

$$
2 \mathrm{q} x^{2}+\mathrm{qx}-1=0
$$

For a quadratic equation,
$a x^{2}+b x+c=0$
The expression for solutions
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Where $b^{2}-4 \mathrm{ac}$ is called discriminant.
(a) Since, given is a quadratic equation with no real roots, its discriminant must be:

$$
\begin{aligned}
& b^{2}-4 \mathrm{ac}<0 \\
& (q)^{2}-4(2 \mathrm{q})(-1)<0 \\
& q^{2}+8 \mathrm{q}<0 \text { (Hence Proved) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \quad q^{2}+8 \mathrm{q}=0 \\
& \mathrm{q}(\mathrm{q}+8)=0 \\
& \mathrm{q}=0 \quad \text { or } \mathrm{q}=-8 \\
& \\
& \text { So, the critical points on } \mathrm{c} \\
& \\
& \text { Therefore, conditions for } \\
& q^{2}+8 \mathrm{q}<0 \quad \text { are: } \\
& \mathrm{q}>-8 \\
& \\
& \mathrm{q}<0 \\
& \Rightarrow \quad
\end{aligned}
$$

So, the critical points on curve for given condition are -8 and 0 .

Q. 8

$4-3 \mathrm{x}-x^{2}$
$4-\left(x^{2}+3 \mathrm{x}\right)$
Complete the square coefficient of the x term: 3 divide it in half: $\frac{3}{2}$
Square it: $\left(\frac{3}{2}\right)^{2}$
Use $\left(\frac{3}{2}\right)^{2}$ to complete the square:
$=4+\left(\frac{3}{2}\right)^{2}-\left(x^{2}+3 x+\left(\frac{3}{2}\right)^{2}\right)$
$=\frac{25}{4}-\left(x+\frac{3}{2}\right)^{2}$

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

- UK Contact: 02081445350
- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

