

CHEMISTRY ONLINE

- TUITION -

Phone: 00442081445350
www.chemistryonlinetuition.com

Emil:asherrana@chemistryonlinetuition.com

PURE MATHS

Algebra and Functions

Level \& Board	EDEXCEL (A-LEVEL)
TOPIC:	
PAPER TYPE:	SURDS AND INDICES
TOTAL QUESTIONS	8
TOTAL MARKS	40

ChemistryOnlineTuition Ltd reserves the right to take legal action against any individual/ company/organization involved in copyright abuse.

Surds and indices 1 (Solution)

Q1.
First, let's rewrite the equation

$$
\frac{\left(2^{x}\right)^{2}}{2}-3\left(2^{x}\right)+4=0
$$

Let $\quad 2^{x}=y$

$$
\frac{y^{2}}{2}-3 y+4=0
$$

Multiply by 2

$$
y^{2}-6 y+8=0
$$

Factorize

$$
y^{2}-2 y-4 y+8=0
$$

$$
y(y-2)-4(y-2)=0
$$

$$
\begin{array}{lll}
y-0 \\
x=2 & ; & y=0 \\
x=1
\end{array}
$$

So $\quad x=2 \quad ; \quad x=1$
Hence the solution to the given equation are $\mathrm{x}=2$ and $\mathrm{x}=1$

Q2.
(a) Identify the two errors made by the student.

First error is $2^{2 \mathrm{x}}$
Second error is -8
(b) Find the exact solution to the equation.

$$
\begin{array}{ll}
\text { Let } & 2^{2 x}-9\left(2^{x}\right)=0 \\
& y^{2}-9 y=0 \\
y(y-9)=0 \\
y=0 \quad ; \quad y=9
\end{array}
$$

So,
Hence, the exact solution is $\mathrm{y}=0$ and $\mathrm{y}=9$

Q3.
(i)

$$
2^{x}=\frac{1}{2^{3}}
$$

So, we can rewrite the equation as:

$$
\begin{aligned}
\Rightarrow & 2^{x} & =2^{-3} \\
\Rightarrow & x & =-3
\end{aligned}
$$

(ii)

$$
\text { Let } \begin{aligned}
& 2 .\left(2^{x}\right)^{2}-5\left(2^{x}\right)+2=0 \\
& y=2^{x} \\
& 2 y^{2}-5 y+2=0 \\
& 2 y^{2}-y-4 y+2=0 \\
& y(2 y-1)-2(2 y-1)=0 \\
& y=2 \quad, \quad y=1 / 2 \\
& 2^{x}=2 \quad, \quad 2^{x}=1 / 2 \\
& x=1 \quad, \quad x=-1
\end{aligned}
$$

But
So, solution to be equation are $x=1$ and $x=-1$
Q4.

$$
\begin{aligned}
& 2^{2 x+1}-6\left(2^{x}\right)+4=0 \\
& \left(2^{x}\right)^{2} \cdot 2-6\left(2^{x}\right)+4=0
\end{aligned}
$$

Let $y=2^{x}$

$$
2 y-6 y+4=0
$$

Factorize

But

$$
\begin{aligned}
& 2 y^{2}-2 y-4 y+4=0 \\
& 2 y(y-1)-4(y-1)=0 \\
& (2 y-4)(y-1)=0 \\
& y=\frac{1}{2} \quad, \quad y=1 \\
& 2^{x}=\frac{1}{2} \quad, \quad 2^{x}=1 \\
& x=-1 \quad, \quad x=0
\end{aligned}
$$

So, the solutions to the original equation are $x=-1$ and $x=0$

Q5.
(i)

Step 1: \quad Rewrite 16 as a power of 2

$$
\begin{aligned}
& 2 x=\frac{1}{2^{-4}} \\
& 2 x=2^{-4}
\end{aligned}
$$

Step 2: \quad Since the bases are same

$$
x=-4
$$

So, the solution to the equation $x=-4$
(ii)

Step 1: Rewrite the equation

$$
\begin{array}{ll}
& 43 x-2=\frac{1}{2^{2+\frac{1}{2}}} \\
& 2^{6 x-4}=2^{-\frac{5}{2}} \\
\Rightarrow & 6 x-4=-\frac{5}{2} \\
\Rightarrow & 6 x=-\frac{5}{2}+4 \\
\Rightarrow & 6 x=\frac{-5+8}{2} \\
\Rightarrow & x=\frac{1}{4}
\end{array}
$$

So, the solution to the equation $4^{3 x-2}=\frac{1}{4 \sqrt{2}}$ is $\mathrm{x}=\frac{1}{4}$

Q6.
(i)

Dividing by 2

$$
16 / 2 \mathrm{a}^{2}=\sqrt{a}
$$

$$
8 a^{2}=\sqrt{a}
$$

Square on both sides

$$
64 a^{4}=a
$$

$$
64 a^{4}-a=0
$$

$$
a\left(64 a^{3}-1\right)=0
$$

$$
a=0 \quad, \quad 64 a^{3}-1=0
$$

$$
\begin{array}{lll}
& , & a^{3}=\frac{1}{64} \\
& , & a^{3}=\frac{1}{4^{3}} \\
\text { Taking cube root on } \quad, & a=\frac{1}{4}
\end{array}
$$

So, the solutions to the equation are $a=0$, and $a=-2$
(ii)

$$
\begin{array}{ll}
\text { Let } y=b^{2} & \left(b^{2}\right)^{2}+6 b^{2}-27=0 \\
& y^{2}+6 y-27=0 \\
& y^{2}+9 y-3 y-27=0 \\
& y(y+9)-3(y+9)=0 \\
& (y-3)(y+9)=0 \\
& y=3 \quad, \quad y=-9 \\
\text { But } & b^{2}=3 \quad, \quad b^{2}=-9 \\
\Rightarrow & b= \pm \sqrt{3} \quad, \quad b= \pm 3 i
\end{array}
$$

So, the solution to the original equation are $\pm \sqrt{3}$ and $\pm 3 \mathrm{i}$.

Q7.

First, simplify the denominator. Since 9 is equal to 3^{2},
we can rewrite it as:

$$
\begin{aligned}
& \frac{3^{x-1}}{3^{2(-y-2)}}=27 \\
& \frac{3^{x-1}}{3^{-2 y-4}}=27 \\
& 3^{x-1+2 y+4}=3^{3}
\end{aligned}
$$

Since the base are same, we can equate the exponents:

$$
\begin{aligned}
& \Rightarrow \quad x-1+2 y+4=3 \\
& \Rightarrow \quad x+2 y+3=3 \\
& \Rightarrow \quad x+2 y=0 \\
& \Rightarrow \quad y=\frac{-x}{2}
\end{aligned}
$$

This is the simplest form of the expression for y in terms of x .

Q8.

First, let's simplify the equation, So, we can rewrite it as:

$$
\begin{aligned}
& 2^{x} \times 2^{2 y}=\frac{1}{2^{2}} \\
& 2^{x+2 y}=\frac{1}{2^{2}} \\
& 2^{x+2 y}=2^{-2}
\end{aligned}
$$

Since, the base are same, we can equate the exponents.

$$
\begin{aligned}
& x+2 y=-2 \\
& 2 y=-x-2 \\
& y=\frac{-(x+2)}{2}
\end{aligned}
$$

This is the simplest form of the expression for y as function of x .

[^0]

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Tutoring students in UK and worldwide since 2008
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, and Math's Tutor

CONTACT INFORMATION FOR

CHEMISTRY ONLINE TUITION

$$
\text { . UK Contact: } 02081445350
$$

- International Phone/WhatsApp: 00442081445350
- Website: www.chemistryonlinetuition.com
- Email: asherrana@chemistryonlinetuition.com
- Address: 210-Old Brompton Road, London SW5 OBS, UK

[^0]: (\#) www.chemistryonlinetuition.com

