Cell Structure

Question Paper 2

Level	A Level
Subject	Biology
Exam Board	OCR
Module	Foundations in Biology
Topic	Cell Structure
Booklet	Question Paper 2

Time allowed: 38 minutes

Score: /28

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E
>69%	56%	50%	42%	34%	26%

The use of microscopy has greatly enhanced our knowledge of cell structure.

(a) Explain the difference between *magnification* and *resolution*.

[2]

[2]

(b) State the resolution that can be achieved by each of the following types of microscope.

light microscope

transmission electron microscope

(c) Fig. 4.1 is an electron micrograph showing part of a nucleus.

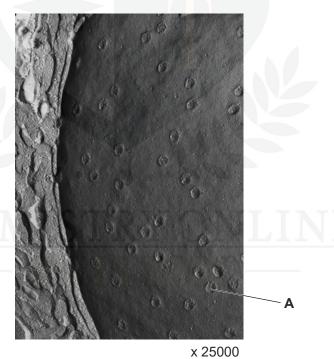


Fig. 4.1

	A student stated that Fig. 4.1 was taken using a scanning electron microscope.		
		What evidence supports the student's statement?	[1]
	(ii)	On Fig. 4.1, the nuclear pore complex, labelled A , is 3 mmwide.	
		Calculate the actual diameter of the pore, in nanometres.	[2]
	(iii)	State the function of the nuclear pores.	[1]
(d)		te two features of a eukaryotic cell, other than nuclear pores, that would not be vising medium power of a light microscope.	ible [2]
		[Total	: 10]

(a) Table 4.1 compares the structures of prokaryotic and eukaryotic cells.

Complete the table.

Table 4.1

prokaryotic	eukaryotic		
no true nucleus	genetic material held in a nucleus		
genetic material consists of 'naked' DNA			
average diameter of cell 0.5 – 5µm			
	ribosomes about 22 nm in diameter		
	cell wall sometimes present		

/I \	T			4 1 41	4 1	C 11	1 (1	- 11
(h)	I ha cytockalat	on is ar	important	component in the	cytonlasm	ot all	ALIKARVOTIC (عالم
101	THE CYLOSKEIEL	UII IS AI	HIIDOILAIL		CVLODIASIII	OI all	Curai volic (Jelio.

(i)	Name one structure, associat	ed with the cytoskeleton,	which can bring	about cell
	movement.			

[1]

[4]

(ii) Suggest two processes inside cells that rely on the cytoskeleton for movement.

[2]

[Total: 7]

Fig. 1.1 is a diagram of an animal cell as seen using a transmission electron microscope.

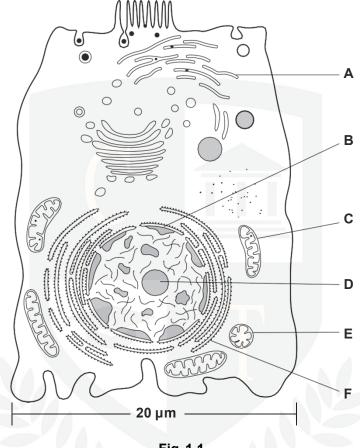


Fig. 1.1

(a) (i) Name the structures of the cell labelled A, B, C and D.

[4]

Δ

В

С

D

(ii) Structures C and E are examples of the same organelle.

Suggest why ${\bf E}$ looks so different to ${\bf C}$.

[2]

(iii	Calculate	the actual	length o	of structure	C.
------	-----------	------------	----------	--------------	----

Show your working and give your answer in micrometres (µm).

[2]

(b) Proteins are produced by the structure labelled **F**. Some of these proteins may be **extracellular** proteins that are released from the cell.

Outline the sequence of events following the production of extracellular proteins that leads to their release from the cell.

[3]

