Communicable diseases, disease prevention & the immune system

Question Paper 3

A Level
Biology
OCR
Biodiversity, evolution and disease
Communicable diseases, disease
prevention & the immune system
Question Paper 3

Time allowed: 51 minutes

Score: /38

Percentage: /100

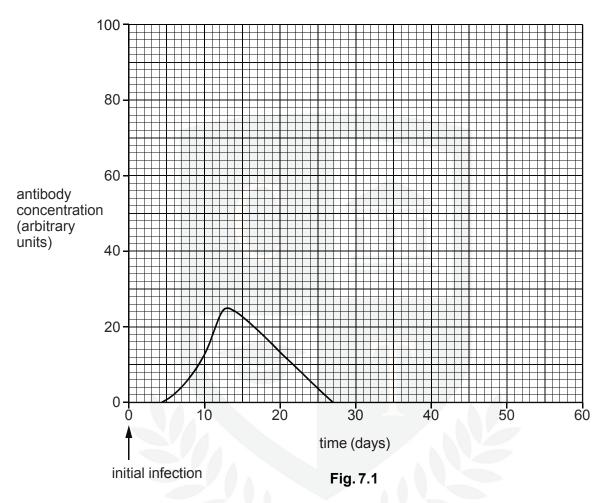
Grade Boundaries:

A*	А	В	С	D	E
>69%	56%	50%	42%	34%	26%

Question 1

(a) Lymphocytes are important components of the immune system and can be classified into B lymphocytes and T lymphocytes.

For each of the statements in the table below, identify whether the description applies to:

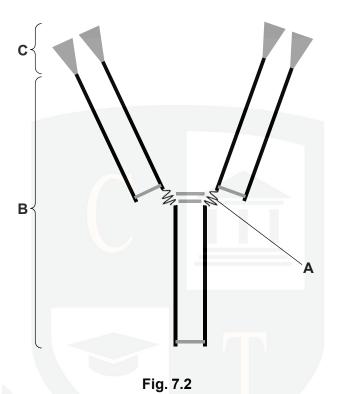

- only B lymphocytes
- only T lymphocytes
- both B and T lymphocytes
- neither.

You may use each response once, more than once, or not at all. The first one has been done for you.

statement	can be applied to
form part of immune response	both
matured in thymus	
secrete substances which kill infected cells	
manufacture antibodies	
undergo clonal expansion	
activate other lymphocytes	

[5]

(b) Fig. 7.1 shows the concentration of antibodies in a patient's blood following an initial infection with a pathogen. This is known as the primary response.



(i) Describe the changes in antibody concentration that occur in the patient's blood during the primary response. [3]

(ii) The patient was subsequently infected with the same pathogen 30 days after the initial infection.

Draw a line **on the graph** to show the likely concentration of antibodies in the patient's blood from 30 days onwards. [2]

(c) Fig. 7.2 shows the structure of an antibody.

Complete the table below by stating the name and function of each of the regions A, B and C.

region	name	function
A		
В	CHEMIS — TI	TRYONLINE JITION —
С		

[6]

Question 2

- (a) Each winter, the UK government recommends that vulnerable members of the public are vaccinated against the influenza (flu) virus.
 - (i) State two groups of people that the government would consider as being vulnerable. [2]
 - (ii) Suggest why the influenza vaccine has to be changed each year. [2]

Fig. 4.1 shows the concentration of antibodies in a patient's bloodstream following an influenza vaccination and then infection with the influenza virus.

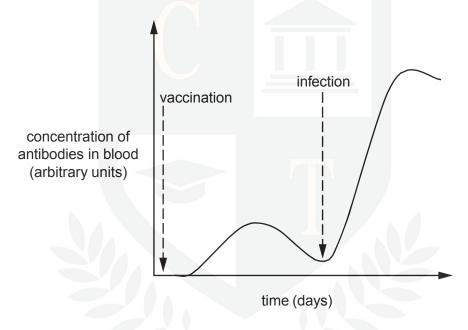


Fig. 4.1

CHEMISTRY ONLINE

- (iii) Using the information from Fig. 4.1, state **two differences** between the primary and secondary immune responses. [2]
- (iv) Memory cells are produced when a patient is vaccinated against influenza.
 - Describe the role of these memory cells when the influenza virus enters the body. [3]

(b) Tami	iflu $^{ ext{@}}$ is an antiviral drug that can be used to treat influenza patients.	
(i)	State why a doctor would not prescribe antibiotics to treat influenza.	1]
(ii)	Neuraminidase is an enzyme which is present on the protein coat of the influenza vi	rus
	This enzyme is used to break down the host cell membrane and allow the influenza viruses to leave the infected cell. Tamiflu® is a neuraminidase inhibitor.	
	Suggest how Tamiflu® could inhibit neuraminidase.	[2]
(ii	Suggest how Tamiflu® could help to reduce the spread of influenza.	[2]
invest	ffort to find new drugs to combat a possible new influenza pandemic, researchers hat igated plants used in traditional medicine in Nepal. Two plants, an onion, Alliutrasum, and an asparagus, Asparagus filicinus, have been found to show antivienties.	ım
	est why researchers in Nepal concentrated their research on plants that had been used ditional medicine.	d [2]

Question 3

Complete the following passage by selecting the most suitable term from the list below.

Each term may be used once, more than once or not at all.

antibiotics	natural	
antibodies	non-specific	
antibody	specific	
antigen	vaccination	
artificial	vaccines	

The body can acquire immunity in a number of different ways.
In passive immunity,are introduced directly into the body. This may occur
via breast milk or the placenta, in which case it is described as
immunity. This immunity provides the growing child with valuable protection until its immune
system has developed fully. It is sometimes important to provide immediate protection, such as
when a person has a wound that could be contaminated with tetanus bacteria. In this case
suitable blood serum from another individual is injected into the bloodstream to provide
immunity.
Edward Jenner pioneered the technique of stimulating the immune system into action so that the
body develops immunity without developing the symptoms of the disease. Jenner's technique
mimics the way in which the body would develop immunity from
direct contact with the pathogen and the stimulation of the primary response. Nowadays, a
harmless form of the is injected so that the body develops antibodies
and memory cells for future defence. This technique is known as
[6]