## Electrons, Bonding \& Structure Multiple Choice

## Model Answers 1

| Level | A Level |
| :--- | :--- |
| Subject | Chemistry |
| Exam Board | OCR |
| Module | Foundations in Chemistry |
| Topic | Electrons, Bonding \& Structure |
| Paper | Multiple Choice |
| Booklet | Model Answers 1 |

Time allowed:
Score:

Percentage:

## Grade Boundaries:

| A $^{*}$ | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $>85 \%$ | $73 \%$ | $60 \%$ | $47 \%$ | $34 \%$ | $21 \%$ |

## Question 1

Which statement best explains why nitrogen has a larger first ionisation energy than oxygen?
A. $N$ atoms have less repulsion between p-orbital electrons than O atoms.
B. $\quad \mathrm{N}$ atoms have a smaller nuclear charge than O atoms.
C. $N$ atoms lose an electron from the $2 s$ subshell, while $O$ atoms lose an electron from the $2 p$ subshell.
D. N atoms have an odd number of electrons, while O atoms have an even number.

- The arrangement of electrons in nitrogen and oxygen are shown in the table below.

- As you move from group 5 to group 6 you start to have to double fill the $p$ subshell.
- The repulsion between the two electrons in the same subshell in oxygen means that the electron is easier to remove than it would otherwise be, so less energy is required.
- $\quad B$ is incorrect as the effect of a smaller nuclear charge is to decrease the first ionization energy, not increase it.
- $\quad$ C is incorrect as both atoms lose electrons from the $2 p$ subshells.
- $\quad D$ is also incorrect as the number of electrons being odd or even is irrelevant.


## Question 2

## Which molecule is not planar?

A $\mathrm{C}_{2} \mathrm{H}_{4}$
B. $\mathrm{C}_{2} \mathrm{H}_{6}$
C. $\mathrm{H}_{2} \mathrm{CO}$
D. HCN

- A, C and D all contain either double or triple bonds which means the carbon atoms are unable to rotate around each other.
- Valence shell electron pair repulsion (VSEPR) theory places the atoms furthest apart to reduce repulsion which causes them to adopt a planar shape with 2D geometry.
- This does not occur in molecule B which is ethane. The carbon carbon single bond allows for rotation and each carbon has three hydrogen bonds and one carbon-carbon bond, which arrange themselves in 3D formation to limit steric interference.



## Question 3

Which element has induced dipole-dipole interactions (London forces) in its solid lattice?
A. boron
B. magnesium
C. silicon
D. sulfur

- Induced dipole-dipole interactions (London forces) exist in-between molecules of substances.
- Sulfur molecules form simple molecular structures, the most common of which consists of 8 S atoms in a cyclic shape held together by covalent bonding.
- Each $\mathrm{S}_{8}$ molecule has a lot of electrons leading to strong London forces between adjacent molecules in the solid lattice structure.
- $\quad \mathrm{Mg}, \mathrm{Si}$ and B are not molecular substances hence there are no London forces present in these elements, hence $\mathrm{A}, \mathrm{B}$ and C are incorrect.



## Question 4

Four atoms, 1-4, are labelled in the structure below.


Which atom has a trigonal planar arrangement of bonds around it?
A. Atom 1
B. Atom 2
C. Atom 3
D. Atom 4

- Carbon 3 forms a trigonal planar arrangement as it has $\mathbf{3}$ bonding pairs and no lone pairs.
- Carbons 1 and 2 both adopt a tetrahedral arrangement.
- Group 4 is incorrect as the nitrogen has a lone pair of electrons hence it will form a pyramidal shape.
- Hence A, B and D are incorrect.


## Question 5

## Which compound has polar molecules?

A. $\mathrm{OCl}_{2}$
B. $\mathrm{BCl}_{3}$
C. $\mathrm{CCl}_{4}$
D. $\mathrm{SCl}_{6}$

- Dichlorine monoxide is similar in shape and polarity to $\mathrm{H}_{2} \mathrm{O}$.
- The oxygen atom has two lone pairs of electrons which repel the chlorine atoms away from the central oxygen atom, decreasing the $\mathrm{O}-\mathrm{Cl}$ bond angles.
- Each O-Cl has a permanent dipole and although each dipole acts in opposite directions, they do not exactly oppose each other as they are arranged asymmetrically.
- They are therefore unable to cancel each other out, so the molecule is overall polar.
- Molecules B, C and D are all nonpolar molecules due to their symmetrical arrangement of atoms.

$$
\mathrm{Cl}^{-\mathrm{O}} \cdot \frac{\mathrm{Cl}}{}
$$

## $\mathrm{OCl}_{2} \underline{\text { has a bent shape due to lone pair repulsion from the central oxygen atom on each } \mathrm{Cl} \text { atom. }}$

## Exam Tip

For identifying polar/non-polar compounds, it is much easier to determine the symmetry of the compound by drawing out the structural formula, rather than from the molecular formula.

## Question 6

A 'dot-and-cross' diagram for nitrogen trichloride, $\mathrm{NC}_{3}$, is shown below.


Which row shows the correct shape and bond angle in a molecule of $\mathrm{NCl}_{3}$ ?

|  | Name of shape | Bond angle |
| :---: | :---: | :---: |
| A | Pyramidal | $104.5^{\circ}$ |
| B | Pyramidal | $107^{\circ}$ |
| C | Tetrahedral | $107^{\circ}$ |
| D | Trigonal planar | $120^{\circ}$ |

- There are three bonding pairs of electrons and one lone pair in nitrogen trichloride.
- That means there are a total of four pairs which make the molecule similar in shape to a tetrahedral.
- The lone pair of electrons on the nitrogen atom, however, repel the bonding pairs slightly and reduce the angle from a normal tetrahedral of $109^{\circ}$ to $107^{\circ}$ degrees.
- This angle and shape correspond to a pyramidal molecule.
- $\quad \mathrm{A}, \mathrm{C}$ and D are therefore incorrect.


Image of $\mathrm{NCl}_{3}$ showing lone pair repulsion on the N atom causing the $\mathrm{N}-\mathrm{H}$ bonds to angle downwards

## Exam Tip

Your first step in questions on shapes of molecules should be to identity the
bonding and non-bonding pairs of electrons. This is easiest done using a dot-and-cross diagram, which you should draw if one is not given in the question.


## Question 7

What is the shape around the carbon atoms in graphene?
A. linear
B. pyramidal
C. tetrahedral
D. trigonal planar

- In graphene each carbon atom is bonded to three others, forming a flat sheet.
- Each sheet is composed of carbon atoms that are sp2 hybridized which form planar hexagonal shapes.
- The three bonds in each carbon atom move as far apart from each other as possible to minimize electron pair repulsion, forming a triangle with bond angles of $120^{\circ}$.
- This geometry is called trigonal planar.
- A, B and C are thus incorrect.


## Question 8

Electron configurations for atoms of different elements are shown below.
Which electron configuration represents the element with the largest first ionisation energy?
A $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$
B $\quad 1 s^{2} 2 s^{2} 2 p^{4}$
C $1 s^{2} 2 s^{2} 2 p^{6}$
D $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$

- Start this question by first identifying the elements in each option:
- Option A is beryllium
- Option B is oxygen
- Option C is neon
- Option $D$ is aluminium
- First ionization energies increase moving across the Periodic Table from left to right.
- Neon lies on the far right of the table, is a noble gas and has a full outer shell making it very stable and thus very difficult to ionize.
- It therefore has the highest first ionisation energy.
- $A, B$ and $D$ are thus incorrect.



## Question 9

## Which compound has non-polar molecules?

A E-1,2-dichlorobut-2-ene
B E-2,3-dichlorobut-2-ene
C Z-2,3-dichlorobut-2-ene
D Z-1,4-dichlorobut-2-ene

- Draw out each molecule making sure that the $\mathrm{E} / \mathrm{Z}$ notation and
numbering is correct.
- It becomes clear that compound B, due to its symmetry, has non-polar molecules.
- This is as the polarity of the Cl atoms acts in opposite directions which cancel each other.


The symmetrical shape of E-2,3-dichlorobut-2-ene renders the molecule non-polar

## Exam Tip

For identifying polar/non-polar compounds, it is much easier to determine the
symmetry of the compound by drawing out the structural formula, rather than
from the molecular formula.

Which molecule is non-polar?
A. $\quad \mathrm{SF}_{6}$
B. $\mathrm{H}_{2} \mathrm{~S}$
C. $\mathrm{PF}_{3}$
D. $\mathrm{NH}_{3}$

- $\quad$ In $\mathrm{SF}_{6}$ all 6 electrons in sulfur (Group 6) have been used in covalent bonds giving the sulfur atom 12 outer electrons. Each fluorine atom has 8 electrons in the outer shell.
- There are no non-bonding electrons hence the molecule is nonpolar.
- $\quad B$ is incorrect as in $H_{2} S$ there are two lone pairs of electrons on the S atom.
- $\quad \mathrm{C}$ is incorrect as in $\mathrm{PF}_{3}$ there is one lone pair on the P atom.
- $\quad$ D is incorrect as in $\mathrm{NH}_{3}$ there is one lone pair on the N atom.


Dot and cross diagram of $\mathrm{SF}_{6}$

## Question 11

Which substance contains hydrogen bonding in the liquid state?
A. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHFCH}_{3}$
C. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COCH}_{3}$
D. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

- Hydrogen bonding occurs between hydrogen and electronegative atoms such as oxygen or a halogen.
- By drawing out the displayed formulae for each molecule, it's clear that only molecule $D$ has a hydrogen atom that is directly bonded to an atom of high electronegativity, in this case oxygen.
- A is incorrect as this molecule is a hydrocarbon.
- $\quad \mathrm{B}$ and C are incorrect as the F and O atoms are bonded to carbons, not hydrogen.


## Question 12

The boiling point of hydrogen bromide is $-67^{\circ} \mathrm{C}$.
The boiling point of hydrogen iodide is $-34^{\circ} \mathrm{C}$.
The different boiling points can be explained in terms of the strength of bonds or interactions.
Which bonds or interactions are responsible for the higher boiling point of hydrogen iodide?

A covalent bonds

B hydrogen bonds
C permanent dipole-dipole interactions
D induced dipole-dipole interactions

- Iodine sits below bromine in Group VII and thus has more electrons.
- This means there are stronger London forces in HI than in HBr hence the boiling point increases as more energy is required to break the intermolecular forces.
- A is incorrect as covalent bonds are not broken during boiling.
- B is incorrect as there is no hydrogen bonding is not involved in the process.
- $\quad$ C is incorrect as hydrogen bromide is more polar than hydrogen iodide as there is a greater difference in electronegativity in HBr .



## Question 13

The boiling point of butan- 1 -ol is $118^{\circ} \mathrm{C}$. The boiling point of 2-methylpropan-2-ol is $82^{\circ} \mathrm{C}$.

Why is the boiling point of butan-1-ol higher than that of 2-methylpropan-2-ol?
A butan-1-ol has stronger induced dipole-dipole interactions because it has more electrons
B butan-1-ol has stronger induced dipole-dipole interactions because it has a straight-chain structure

C butan-1-ol can form hydrogen bonds while 2-methylpropan-2-ol cannot
D butan-1-ol is more stable because it is a primary alcohol

- Butan-1-ol is a straight chain structure so there are no branches to disrupt the dipole-dipole interactions.
- 2-methylpropan-2-ol is branched hence the interactions are disrupted.
- A is incorrect as both molecules have the same number of electrons.
- C is incorrect as both molecules can hydrogen bond as both contain a hydroxyl group.
- $\quad \mathrm{D}$ is incorrect as primary alcohols tend to be less stable due to there being less steric hindrance around the OH group.


