

CHEMISTRY ONLINE

Phone: +442081445350 www.chemistryonlinetuition.com Email: asherrana@chemistryonlinetuition.com

CHEMISTRY

PHYSICAL CHEMISTRY

LEVEL \& BOARD:	OCR (A - LEVEL)
TOPIC:	AMOUNT OF SUBSTANCE
PAPER TYPE:	QUESTION PAPER 4
TOTAL QUESTIONS	10
TOTAL MARKS	46

Amount of Substance - 4

1. An aqueous solution of iron(III) chloride can be prepared by the redox reaction between iron metal and dilute hydrochloric acid.
(a) A student reacts 0.0600 mol of iron completely with dilute hydrochloric acid to form an aqueous solution of iron(III) chloride. The equation for this reaction is shown below.
$2 \mathrm{Fe}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{FeCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
Calculate the volume of hydrogen gas formed, in dm^{3}, at room temperature and pressure. [2]
(b)Calculate the mass of FeCl_{3} formed. Give your answer to three significant figures. [2]
(c) Calculate the volume, in cm^{3}, of $1.20 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid needed to react completely with 0.0600 mol of iron. [2]
2. Copper reacts with sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, as shown in the following equation:
$\mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
A student plans to react 60.0 cm 3 of $0.080 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 0.150 g of copper (an excess).
Calculate the volume, in cm^{3}, of hydrogen that should be produced at RTP. [3]
3. A student reacts $25.0 \mathrm{~cm}^{3}$ of $4.50 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KOH}(\mathrm{aq})$ with an excess of HCl . An equation for this reaction is shown.
$\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculate the mass, in g , of KCl formed in solution. Give your answer to three significant figures. Show your working. [4]
\qquad
\qquad
\qquad
4. In a composite material containing titanium and aluminum, the titanium proportion is examined using mass spectrometry.

Titanium isotope

$11.1910 .09100 \quad 7.34 \quad 7.03$
$8.25 \quad 7.44 \quad 73.72 \quad 5.41 \quad 5.18$
73.72
(a) Calculate the relative atomic mass of titanium in the composite material, giving your answer to two decimal places. [2]
\qquad
\qquad
\qquad
\qquad
(b)Given a specific segment of the composite weighing 5.00 g and comprising 84.0% titanium by mass, determine the number of titanium atoms in this segment. Express your answer in standard form and round it to three significant figures. [2]
\qquad
\qquad
\qquad
\qquad
5. This question explores the properties of alkaline earth metals. Barium and radium are also Group 2 metals. They both react with water. A chemist reacts 0.250 g of radium with $300 \mathrm{~cm}^{3}$ of water, resulting in a colorless solution containing radium ions. The volume of the solution remains at $300 \mathrm{~cm}^{3}$.
(a) Write an equation for the reaction between radium and water, including state symbols. [1]
(b) Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of radium ions in the resulting solution. [2]
(c) A student plans to perform this experiment using 0.250 g of barium instead of 0.250 g of radium. Predict the potential difference, if any, in the volume of gas produced by barium compared to radium. Justify your prediction, and include relevant calculations in your explanation. [3]
6. Strontium forms compounds with oxygen, fluorine, and sulfur, resulting in ionic compounds.
(a) Strontium fluoride, SrF_{2}, possesses a giant ionic lattice structure.
i. Define the term 'ionic bond.' [1]
\qquad
\qquad
\qquad
ii. Construct a 'dot-and-cross' diagram representing the bonding in strontium fluoride, displaying only the outer electrons. [1]
\qquad
iii. Determine the number of strontium ions in 1.80 g of strontium fluoride. Present your answer in standard form and round to three significant figures. [1]
(b) Strontium sulfate, SrSO_{4}, is soluble in water. Contrast the electrical conductivities of solid and aqueous strontium sulfate. Elaborate on your response concerning the involved particles. [2]
7. Substance X reacts with oxygen to form a compound as the only product.
(a) This reaction is a redox reaction. The molecular formula of the compound formed is the same as its empirical formula.
i. Define what is meant by the term empirical formula. [1]
ii. Propose the empirical formula of the compound formed. [1]
(b) Determine the amount, in mol, of oxygen atoms in 2.450×10^{21} oxygen molecules. [2]
8. Chlorine is a reactive element. It combines with other non-metals to form covalent compounds. Sulfur trichloride, SCl_{3}, and bromine monochloride, BrCl , are examples of covalent compounds used in organic synthesis. SCl_{3} can be prepared by heating chlorine with sulfur, S_{8}.
(a) Write an equation for this reaction. [1]
\qquad
\qquad
(b)How many molecules are present in 1.3535 g of SCl_{3} ? [3]
\qquad
\qquad
\qquad
\qquad
(c) The 'dot-and-cross' diagram of a molecule of SCl_{3} is given below

Name the shape of this molecule and explain why the molecule has this shape. [2]
\qquad
\qquad
\qquad
\qquad
9. 1-Bromobutane $(\mathrm{Mr}, 136.9)$ can be made from a reaction of butan-1-ol, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$, as shown in the equation below.
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{KBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{KHSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
(a) Calculate the atom economy for the formation of 1-bromobutane in this reaction. [1]
(b) Suggest a reactant, other than a different acid, that could be used to improve the atom economy of making 1 -bromobutane by the same method. [1]
(c) A student prepares a sample of 1-bromobutane. 5.92 g of butan-1-ol are reacted with an excess of sulfuric acid and potassium bromide. After purification, 9.72 g of 1-bromobutane are collected. Calculate the percentage yield. Give your answer to three significant figures. [3]
\qquad
\qquad
\qquad
\qquad
\qquad
10.A student carries out an experiment to determine the amount of water of crystallisation in the formula of hydrated salt. The student intends to remove the water by heating the hydrated salt. A diagram of the apparatus used by the student is shown below.

- The student adds the hydrated salt to the crucible and weighs the crucible and contents.
- The student heats the crucible and contents and allows them to cool.
- The student weighs the crucible and residue.

The student's results are shown below.

Mass of crucible + hydrated salt / g	16.84
Mass of crucible + residue after heating / g	16.26

(a) The maximum error in each mass measurement using the balance is ± 0.005 g. Calculate the percentage error in the mass of water removed. [1]
\qquad
\qquad
\qquad
\qquad
(b)Suggest one modification that the student could make to their method to reduce the percentage error in the mass of water removed. [1]
\qquad
\qquad
\qquad
\qquad
(c) The student is not sure that all the water of crystallisation has been removed. How could the student modify the experiment to be confident that all the water of crystallisation has been removed? [1]

DR. ASHAR RANA (M.B.B.S)

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine(MBBS) in 2007
- 15 years of teaching experience in London
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Maths and Biology Tutor.

CONTACT US

Phone: +442081445350
REQUEST TUITION
Email: asherrana@chemistryonlinetuition.com
Web: chemistryonlinetuition.com

