

CHEMISTRY ONLINE

Phone: +442081445350 www.chemistryonlinetuition.com Email: asherrana@chemistryonlinetuition.com

CHEMISTRY

PHYSICAL CHEMISTRY

LEVEL \& BOARD:	OCR (AS - LEVEL)
TOPIC:	AMOUNT OF SUBSTANCE
PAPER TYPE:	QUESTION PAPER 2
TOTAL QUESTIONS	10
TOTAL MARKS	50

Amount of Substance

1. Zinc reacts with hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, as shown in the following equation. $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
A student investigates the rate of this reaction. The student plans to react $50.0 \mathrm{~cm}^{3}$ of 0.100 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ with 0.200 g of zinc (an excess).
Calculate the volume, in cm^{3}, of hydrogen that should be produced at RTP. [3]
2. An aqueous solution of aluminium chloride can be prepared by the redox reaction between aluminium metal and dilute hydrochloric acid.
(a) A student reacts 0.0800 mol of aluminium completely with dilute hydrochloric acid to form an aqueous solution of aluminium chloride. The equation for this reaction is shown below.
$2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
Calculate the volume of hydrogen gas formed, in dm^{3}, at room temperature and pressure. [2]
(b)Calculate the mass of AlCl 3 formed. Give your answer to three significant figures. [2]
(c) Calculate the volume, in cm 3 , of $1.20 \mathrm{~mol} \mathrm{dm}-3$ hydrochloric acid needed to react completely with 0.0800 mol of aluminium. [2]
3. A student reacts $35.0 \mathrm{~cm}^{3}$ of $3.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ with an excess of Al. An equation for this reaction is shown.
$2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
Calculate the mass, in g , of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ formed in solution. Give your answer to three significant figures. Show your working. [4]
4. Europium reacts with dilute sulfuric acid, forming a solution of europium sulfate and hydrogen gas.
(a) A chemist reacts 0.608 g of europium with an excess of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and collects $144 \mathrm{~cm}^{3}$ of hydrogen gas at room temperature and pressure. Analyse the chemist's results to write the overall equation for the reaction between europium and sulfuric acid. Show all your working. Equation.[6]
(b) Calculate the number of europium atoms in 0.0019 g of europium. [2]
5. Alkenes can be prepared from alcohols. Cyclopentene can be prepared from cyclopentanol as shown in the equation below.

A student plans to prepare 5.00 g of cyclopentene from cyclopentanol. The percentage yield of this reaction is 45.0%.
(a) What is the name of this type of reaction? [1]
(b) Calculate the mass of cyclopentanol that the student should use. Show your working. [3]
6. 1.00 tonne of ammonia is reacted with carbon dioxide to prepare the fertiliser urea.
$\mathrm{NH}_{2} \mathrm{CONH}_{2} .2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(1)$
1.35 tonnes of urea are formed. Calculate the percentage yield of urea. Show all your working. [3]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. An alkene D is a liquid at room temperature and pressure but can easily be vaporised. When vaporised, 0.1881 g of D produces $82.5 \mathrm{~cm}^{3}$ of gas at 101 kPa and 373 K . Determine the molar mass and molecular formula of alkene D. Show all your working. [5]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8. This question is about alcohols.
(a) Butan-2-ol can be prepared using two different methods.

Method 1

Method 2

butan-2-ol

Comment on the atom economy of each method, giving your reasons. [2]
(b) A student uses Method 2 to prepare 3.552 g of butan-2-ol from 2-bromobutane. The percentage yield of butan-2-ol is 80.0%. Calculate the mass of 2-bromobutane that the student uses. [3]
9. When magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, is heated, it decomposes as shown. $2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow$ $2 \mathrm{MgO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
A student heats 2.966 g of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, which decomposes as above.
Calculate the total volume of gas formed, in cm 3 , at room temperature and pressure, RTP. [3]
\qquad
\qquad

10.Barium combines with oxygen, chlorine and nitrogen to form ionic compounds
(a) Barium oxide, BaO , has a giant ionic lattice structure.
i. State what is meant by the term ionic bond. [1]
ii. Draw a 'dot-and-cross' diagram to show the bonding in barium oxide. Show outer electrons only. [1]
iii. Calculate the number of barium ions in 1.50 g of barium oxide. Give your answer in standard form and to three significant figures. [1]
(b) Barium chloride, BaCl_{2}, is soluble in water.
i. Compare the electrical conductivities of solid and aqueous barium chloride. Explain your answer in terms of the particles involved. [2]
ii. Describe the use of aqueous barium chloride in qualitative analysis. [2]
iii. Hydrated barium chloride can be crystallised from solution. Hydrated barium chloride has the formula $\mathrm{BaCl}_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$ and a molar mass of $244.3 \mathrm{~g} \mathrm{~mol}^{-1}$. Determine the value of x in the formula of $\mathrm{BaCl}_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$. [2]

- Founder \& CEO of Chemistry Online Tuition Ltd.
- Completed Medicine(MBBS) in 2007
- 15 years of teaching experience in London
- CIE \& EDEXCEL Examiner since 2015
- Chemistry, Physics, Maths and Biology Tutor.

CONTACT US

Phone: +442081445350
REQUEST TUITION
Email: asherrana@chemistryonlinetuition.com
Web: chemistryonlinetuition.com

